Georgios Vassilikogiannakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6749686/publications.pdf Version: 2024-02-01

	117625	98798
4,886	34	67
citations	h-index	g-index
123	123	4230
docs citations	times ranked	citing authors
	citations 123	4,88634citationsh-index123123

#	Article	IF	CITATIONS
1	Sequential Visible Lightâ€Induced Reactions Using Different Photocatalysts: Transformation of Furans into 2â€Pyridones via γâ€Lactams Using a New Ring Expansion Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	4
2	Access to high value sp ³ -rich frameworks using photocatalyzed [2 + 2]-cycloadditions of γ-alkylidene–γ-lactams. Chemical Communications, 2022, 58, 8085-8088.	4.1	7
3	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie, 2021, 133, 4381-4387.	2.0	4
4	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4335-4341.	13.8	11
5	5-Hydroxy-pyrrolone based building blocks as maleimide alternatives for protein bioconjugation and single-site multi-functionalization. Chemical Science, 2021, 12, 5246-5252.	7.4	10
6	One-Pot Transformation of Furans into 1-Azaspirocyclic Alkaloid Frameworks Induced by Visible Light. Organic Letters, 2021, 23, 5354-5358.	4.6	7
7	Eosin: a versatile organic dye whose synthetic uses keep expanding. Organic and Biomolecular Chemistry, 2021, 19, 3303-3317.	2.8	28
8	Merging singlet-oxygen induced furan oxidations with organocatalysis: synthesis of enantiopure cyclopentanones and hydrindanes. Organic and Biomolecular Chemistry, 2020, 18, 2817-2822.	2.8	15
9	Singlet Oxygen and Dyes: Synthesis with Visible Light is Where the Future Lies. ChemPhotoChem, 2020, 4, 385-387.	3.0	3
10	The reticent tautomer: exploiting the interesting multisite and multitype reactivity of 4-pyrrolin-2-ones. Organic and Biomolecular Chemistry, 2020, 18, 180-190.	2.8	21
11	Singlet-Oxygen-Mediated Synthesis of Pandanusine A and Pandalizine C and Structural Revision of Pandanusine B. Organic Letters, 2019, 21, 5467-5470.	4.6	13
12	Vinylogous Reactivity of Cyclic 2â€Enones: Organocatalysed Asymmetric Addition to 2â€Enals to Synthesize Fused Carbocycles. Angewandte Chemie, 2019, 131, 6814-6818.	2.0	2
13	Vinylogous Reactivity of Cyclic 2â€Enones: Organocatalysed Asymmetric Addition to 2â€Enals to Synthesize Fused Carbocycles. Angewandte Chemie - International Edition, 2019, 58, 6742-6746.	13.8	7
14	Oneâ€Pot Synthesis of Diverse Î³â€Łactam Scaffolds Facilitated by a Nebulizerâ€Based Continuous Flow Photoreactor. ChemPhotoChem, 2018, 2, 860-864.	3.0	25
15	Asymmetric and Site-Selective [3 + 2]-Annulations for the Synthesis of High-Value Bicyclic Lactams. Organic Letters, 2018, 20, 1146-1149.	4.6	24
16	The Power of Triplet and Singlet Oxygen in Synthesis: 2-Oxindoles, 3-Hydroxy-2-oxindoles, and Isatins from Furans. Organic Letters, 2018, 20, 3631-3634.	4.6	13
17	Rapid Access to 3â€Acylâ€5â€alkoxybutyrolactams Using Triplet and Singlet Oxygen. European Journal of Organic Chemistry, 2018, 2018, 4523-4526.	2.4	7
18	Singlet Oxygen: Chemistry, Applications and Challenges Ahead. ChemPhotoChem, 2018, 2, 510-511.	3.0	4

#	Article	IF	CITATIONS
19	Oneâ€Pot Transformation of Simple Furans into Octahydroindole Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 4020-4023.	13.8	32
20	Oneâ€Pot Transformation of Simple Furans into Octahydroindole Scaffolds. Angewandte Chemie, 2017, 129, 4078-4081.	2.0	11
21	A Novel Nebulizerâ€Based Continuous Flow Reactor: Introducing the Use of Pneumatically Generated Aerosols for Highly Productive Photooxidations. ChemPhotoChem, 2017, 1, 173-177.	3.0	32
22	Synthesis of cyclopent-2-enones from furans using a nebulizer-based continuous flow photoreactor. Organic and Biomolecular Chemistry, 2017, 15, 10151-10155.	2.8	14
23	Singletâ€Oxygenâ€Initiated Tandem Transformation of 2â€Hexylfuran to the Natural Alkaloids Glochidine and Glochidicine. European Journal of Organic Chemistry, 2016, 2016, 3304-3306.	2.4	19
24	Photooxygenation of Furylalkylamines: Easy Access to Pyrrolizidine and Indolizidine Scaffolds. Angewandte Chemie, 2016, 128, 4681-4685.	2.0	13
25	Regiocontrolled Synthesis of γ-Hydroxybutenolides via Singlet Oxygen-Mediated Oxidation of 2-Thiophenyl Furans. Journal of Organic Chemistry, 2016, 81, 4406-4411.	3.2	16
26	Chemoselective photooxygenations of furans bearing unprotected amines: their use in alkaloid synthesis. Organic and Biomolecular Chemistry, 2016, 14, 8636-8640.	2.8	23
27	Total Synthesis and Structural Revision of (+)-Yaoshanenolide B. Organic Letters, 2016, 18, 4982-4985.	4.6	11
28	Photooxygenation of Furylalkylamines: Easy Access to Pyrrolizidine and Indolizidine Scaffolds. Angewandte Chemie - International Edition, 2016, 55, 4605-4609.	13.8	55
29	Singlet Oxygenâ€Induced Furan Oxidation for Siteâ€Specific and Chemoselective Peptide Ligation. Chemistry - A European Journal, 2016, 22, 8457-8461.	3.3	25
30	Pectenotoxin's ABCDE Ring System: A Complex Target to Test the Potential of Singlet Oxygen Super Cascades as Tools for Synthesis. European Journal of Organic Chemistry, 2015, 2015, 7240-7243.	2.4	12
31	First Total Synthesis of Pandamarine. Organic Letters, 2015, 17, 3596-3599.	4.6	39
32	Methylene Blue as a Photosensitizer and Redox Agent: Synthesis of 5â€Hydroxyâ€I <i>H</i> â€pyrrolâ€2(5 <i>H</i>)â€ones from Furans. Angewandte Chemie - International Edition, 2015, 54, 6283-6287.	13.8	68
33	cis-Semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions. Chemical Communications, 2015, 51, 2384-2387.	4.1	80
34	Singlet oxygen-mediated transformation of furans into aromatic nitrogen-containing polycycles in water. Arkivoc, 2015, 2015, 154-166.	0.5	4
35	Singlet Oxygen-Mediated Synthesis of <i>Bis</i> -spiroketals Found in Azaspiracids. Organic Letters, 2014, 16, 3150-3153.	4.6	13
36	One-pot synthesis of 1-azaspiro frameworks initiated by photooxidation of simple furans. Chemical Communications, 2014, 50, 400-402.	4.1	41

#	Article	IF	CITATIONS
37	Oneâ€Pot Transformation of Simple Furans into 4â€Hydroxyâ€2â€cyclopentenones in Water. Angewandte Chemie - International Edition, 2014, 53, 13201-13205.	13.8	57
38	Furans and singlet oxygen – why there is more to come from this powerful partnership. Chemical Communications, 2014, 50, 15480-15498.	4.1	113
39	From Simple Furans to Complex Nitrogenâ€Bearing Aromatic Polycycles by Means of a Flexible and General Reaction Sequence Initiated by Singlet Oxygen. Chemistry - A European Journal, 2013, 19, 10119-10123.	3.3	44
40	Using singlet oxygen to synthesise the CDE-ring system of the pectenotoxins. Organic and Biomolecular Chemistry, 2013, 11, 537-541.	2.8	8
41	One-pot Synthesis of the Tetracyclic Framework of the AromaticErythrinaAlkaloids from Simple Furans. Organic Letters, 2013, 15, 3714-3717.	4.6	52
42	Photooxidations of 2-(γ,Îμ-Dihydroxyalkyl) Furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins. Organic Letters, 2012, 14, 2374-2377.	4.6	26
43	First Total Synthesis of Paracaseolide A. Organic Letters, 2012, 14, 3565-3567.	4.6	29
44	Using water, light, air and spirulina to access a wide variety of polyoxygenated compounds. Green Chemistry, 2012, 14, 601.	9.0	49
45	A Versatile Synthesis of Meyers' Bicyclic Lactams from Furans: Singletâ€Oxygenâ€Initiated Reaction Cascade. Angewandte Chemie - International Edition, 2012, 51, 8868-8871.	13.8	61
46	Singlet oxygen initiated cascade transformation of a simple difuran into the key ABC-ring motif of the pectenotoxins. Chemical Communications, 2011, 47, 259-261.	4.1	23
47	Green oxidations of furans—initiated by molecular oxygen—that give key natural product motifs. Organic and Biomolecular Chemistry, 2011, 9, 2031.	2.8	63
48	Scope and Limitations of the Photooxidations of 2-(α-Hydroxyalkyl)furans: Synthesis of 2-Hydroxy- <i>exo</i> brevicomin. Organic Letters, 2011, 13, 1166-1169.	4.6	42
49	Singlet-Oxygen-Mediated One-Pot Synthesis of 3-Keto-tetrahydrofurans from 2-(β-Hydroxyalkyl) Furans. Organic Letters, 2009, 11, 313-316.	4.6	41
50	γ-Spiroketal γ-Lactones from 2-(γ-Hydroxyalkyl)furans: Syntheses of epi-Pyrenolides D and Crassalactone D. Organic Letters, 2009, 11, 4556-4559.	4.6	53
51	Using Singlet Oxygen to Synthesize Polyoxygenated Natural Products from Furans. Accounts of Chemical Research, 2008, 41, 1001-1011.	15.6	287
52	Synthesis of (+)-Zerumin B Using a Regioselective Singlet Oxygen Furan Oxidation. Journal of Organic Chemistry, 2008, 73, 2021-2023.	3.2	20
53	Stereochemistry of the Singlet Oxygenation of Simple Alkenes: A Stereospecific Transformation. Organic Letters, 2008, 10, 3997-4000.	4.6	23
54	Spiroperoxy Lactones from Furans in One Pot: Synthesis of (+)-Premnalane A. Organic Letters, 2007, 9, 5585-5588.	4.6	37

#	Article	IF	CITATIONS
55	Synthesis of Chinensines Aâ^'E. Journal of Organic Chemistry, 2007, 72, 4826-4831.	3.2	20
56	Using singlet oxygen to synthesise a [6,6,5]-bis-spiroketal in one-pot from a simple 2,5-disubstituted furan. Organic and Biomolecular Chemistry, 2007, 5, 772.	2.8	29
57	A Versatile and General One-Pot Method for Synthesizing Bis-spiroketal Motifs. Organic Letters, 2006, 8, 1945-1948.	4.6	50
58	The power of singlet oxygen chemistry in biomimetic syntheses. Tetrahedron, 2006, 62, 5308-5317.	1.9	74
59	Illustrating the Power of Singlet Oxygen Chemistry in a Synthetic Context: Biomimetic Syntheses of Litseaverticillols A-G, I and J and the Structural Reassignment of Litseaverticillol E. Chemistry - A European Journal, 2005, 11, 5899-5907.	3.3	38
60	Regioselective ortho-Lithiation of 3-Aryl and 3-Styryl Furans ChemInform, 2005, 36, no.	0.0	0
61	The Total Synthesis of Coleophomones B, C, and D. Journal of the American Chemical Society, 2005, 127, 8872-8888.	13.7	108
62	Synthesis of the Spirocyclic Core of the Prunolides Using a Singlet Oxygen-Mediated Cascade Sequence. Organic Letters, 2005, 7, 2357-2359.	4.6	41
63	Regioselective Ortho Lithiation of 3-Aryl and 3-Styryl Furans. Organic Letters, 2005, 7, 3347-3350.	4.6	23
64	Olefin Metathesis:  Remote Substituents Governing the Stereoselectivity of 11-Membered-Ring Formation. Organic Letters, 2004, 6, 205-208.	4.6	32
65	Biomimetic Total Synthesis of Litseaverticillols B, E, I, and J and Structural Reassignment of Litseaverticillol E. Organic Letters, 2004, 6, 2039-2042.	4.6	32
66	Biomimetic Total Synthesis of Litseaverticillols A, C, D, F, and G: Singlet-Oxygen-Initiated Cascades. Angewandte Chemie - International Edition, 2003, 42, 5465-5468.	13.8	60
67	Total synthesis of coleophomone DElectronic supplementary information (ESI) available: selected physical data for compound 18. See http://www.rsc.org/suppdata/cc/b2/b208236p/. Chemical Communications, 2002, , 2478-2479.	4.1	29
68	Total Synthesis of Colombiasin A and Determination of Its Absolute Configuration. Chemistry - A European Journal, 2002, 8, 2214.	3.3	1
69	The Diels-Alder Reaction in Total Synthesis. Angewandte Chemie - International Edition, 2002, 41, 1668-1698.	13.8	1,570
70	The Total Synthesis of Coleophomones B and C. Angewandte Chemie - International Edition, 2002, 41, 3276-3281.	13.8	59
71	Total Synthesis of Colombiasin A and Determination of Its Absolute Configuration. Chemistry - A European Journal, 2001, 7, 5359-5371.	3.3	74
72	Total Synthesis of Colombiasin A. Angewandte Chemie - International Edition, 2001, 40, 2482-2486.	13.8	112

#	ARTICLE Dichlorocyclobutene as a Versatile Synthon in Organic Synthesis, Rapid Entry into Complex	IF	CITATIONS
73	Polycyclic Systems with Remarkably Stereospecific Reactions We thank Drs. D. H. Huang and G. Siuzdak for their assistance with NMR spectroscopy and mass spectrometry, respectively. This work was financially supported by the National Institutes of Health (USA) and The Skaggs Institute for Chemical Biology a postdoctoral followskip from the Shaggs Institute for Chemical	13.8	42
74	Biology, a postdoctoral fellowship from the Skaggs Institute for Research (10 V.C.), and grants from Total Synthesis of Colombiasin A This work was financially supported by the National Institutes of Health (USA) and The Skaggs Institute for Chemical Biology, postdoctoral fellowships from Bayer AG (to R.K. and W.M.), and grants from Abbott, Amgen, ArrayBiopharma, Boehringer-Ingelheim, Glaxo, Hoffmann-La Roche, DuPont, Merck, Novartis, Pfizer, and Schering Plough Angewandte Chemie - International Edition, 2001, 40, 2482-2486.	13.8	2
75	Stereochemistry and steric isotope effect on the [2+2] photocycloaddition of \hat{I}^2, \hat{I}^2 -dimethyl-p-methoxystyrene to C60: the nature of the transition state structures. Tetrahedron Letters, 2000, 41, 4667-4670.	1.4	11
76	Biomimetic Total Synthesis of Bisorbicillinol, Bisorbibutenolide, Trichodimerol, and Designed Analogues of the Bisorbicillinoids. Journal of the American Chemical Society, 2000, 122, 3071-3079.	13.7	136
77	Isotope Effects and syn Selectivity in the Ene Reaction of Triazolinedione with Conjugated Enones: Aziridinium Imide or an Open Intermediate Mechanism?. Organic Letters, 2000, 2, 2245-2248.	4.6	17
78	Reaction of Singlet Oxygen withtrans-4-Propenylanisole. Formation of [2 + 2] Products with Added Acid. Journal of Organic Chemistry, 2000, 65, 6876-6878.	3.2	32
79	Stereochemistry of the Triazollinedioneâ^ Alkene Ene Reaction:Â A Stereospecific Suprafacial Transformation. Journal of the American Chemical Society, 2000, 122, 9540-9541.	13.7	19
80	Mechanism of the [2 + 2] Photocycloaddition of Fullerene C60with Styrenes. Journal of Organic Chemistry, 2000, 65, 8180-8187.	3.2	35
81	New Synthetic Technology for the Mild and Selective One-Carbon Homologation of Hindered Aldehydes in the Presence of Ketones. Organic Letters, 2000, 2, 1895-1898.	4.6	32
82	Studies towards Trichodimerol: Novel Cascade Reactions and Polycyclic Frameworks. Chemistry - A European Journal, 1999, 5, 3651-3665.	3.3	49
83	Biomimetic Explorations Towards the Bisorbicillinoids: Total Synthesis of Bisorbicillinol, Bisorbibutenolide, and Trichodimerol. Angewandte Chemie - International Edition, 1999, 38, 3555-3559.	13.8	87
84	Stereochemistry in the Ene Reactions of Singlet Oxygen and Triazolinediones with Allylic Alcohols. A Mechanistic Comparison. Journal of Organic Chemistry, 1999, 64, 4130-4139.	3.2	23
85	Regio- and Stereoselectivity of the [2 + 2] Photocycloaddition of Acyclic Enones to C60. Journal of Organic Chemistry, 1999, 64, 3392-3393.	3.2	21
86	Diastereoselective ene reactions of triazolinediones with chiral allylic alcohols. Evidence for a hydroxyl-enophile steering effect. Tetrahedron Letters, 1998, 39, 2393-2396.	1.4	6
87	A mechanistic comparison between [2+2] and [4+2] cycloadditions of tetracyanoethylene to 2,7-dimethyl-2,trans-4,6-octatriene. A very remote secondary H/D isotope effect. Tetrahedron Letters, 1998, 39, 8891-8894.	1.4	2
88	Primary and Secondary Isotope Effects in the Photooxidation of 2,5-Dimethyl-2,4-hexadiene. Elucidation of the Reaction Energy Profile. Journal of Organic Chemistry, 1998, 63, 6390-6393.	3.2	10
89	A New [2 + 2] Functionalization of C60 with Alkyl-Substituted 1,3-Butadienes:  A Mechanistic Approach. Stereochemistry and Isotope Effects. Journal of the American Chemical Society, 1998, 120, 9911-9920.	13.7	41
90	Stereochemistry and Isotope Effects of the [2 + 2] Photocycloadditions of Arylalkenes to C60. A Stepwise Mechanism. Journal of the American Chemical Society, 1997, 119, 7394-7395.	13.7	39

#	Article	IF	CITATIONS
91	[2+2] photocycloadditions of to C60. A step-wise mechanism. Tetrahedron Letters, 1997, 38, 4323-4326.	1.4	27
92	Mechanistic studies in the reaction of 4â€phenylâ€1,2,4â€triazolineâ€3,5â€dione with 2,5â€dimethylâ€2,4â€he. Journal of Heterocyclic Chemistry, 1996, 33, 993-995.	kadiene. 2.6	1
93	Remote ε- secondary isotope effect in the reaction of tetracyanoethylene with 2,5-dimethyl-2,4-hexadiene. A step-wise mechanism. Tetrahedron Letters, 1996, 37, 3075-3078.	1.4	11