
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6749569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythropoietin Interacts with Specific S100 Proteins. Biomolecules, 2022, 12, 120.	4.0	8
2	Specific cytokines of interleukin-6 family interact with S100 proteins. Cell Calcium, 2022, 101, 102520.	2.4	11
3	Interferon-β Activity Is Affected by S100B Protein. International Journal of Molecular Sciences, 2022, 23, 1997.	4.1	5
4	What Is Parvalbumin for?. Biomolecules, 2022, 12, 656.	4.0	15
5	Strontium Binding to α-Parvalbumin, a Canonical Calcium-Binding Protein of the "EF-Hand―Family. Biomolecules, 2021, 11, 1158.	4.0	11
6	The Highly Conservative Cysteine of Oncomodulin as a Feasible Redox Sensor. Biomolecules, 2021, 11, 66.	4.0	3
7	Highly specific interaction of monomeric S100P protein with interferon beta. International Journal of Biological Macromolecules, 2020, 143, 633-639.	7.5	18
8	α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules, 2020, 10, 1210.	4.0	46
9	Mouse S100G protein exhibits properties characteristic of a calcium sensor. Cell Calcium, 2020, 87, 102185.	2.4	2
10	Experimental Insight into the Structural and Functional Roles of the â€ ⁻ Black' and â€ ⁻ Gray' Clusters in Recoverin, a Calcium Binding Protein with Four EF-Hand Motifs. Molecules, 2019, 24, 2494.	3.8	2
11	Effects of his-tags on physical properties of parvalbumins. Cell Calcium, 2019, 77, 1-7.	2.4	4
12	Monomeric state of S100P protein: Experimental and molecular dynamics study. Cell Calcium, 2019, 80, 152-159.	2.4	11
13	Effect of Cu2+ and Zn2+ ions on human serum albumin interaction with plasma unsaturated fatty acids. International Journal of Biological Macromolecules, 2019, 131, 505-509.	7.5	6
14	Analyzing the structural and functional roles of residues from the †black' and †gray' clusters of human S100P protein. Cell Calcium, 2019, 80, 46-55.	2.4	4
15	The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein Journal, 2018, 37, 203-215.	1.6	30
16	Calcium-dependent interaction of monomeric S100P protein with serum albumin. International Journal of Biological Macromolecules, 2018, 108, 143-148.	7.5	4
17	Comprehensive analysis of the roles of †black' and †gray' clusters in structure and function of rat β-parvalbumin. Cell Calcium, 2018, 75, 64-78.	2.4	8
18	On the relationship between the conserved â€~black' and â€~gray' structural clusters and intrinsic disorder in parvalbumins. International Journal of Biological Macromolecules, 2018, 120, 1055-1062.	7.5	5

#	Article	IF	CITATIONS
19	Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs. Journal of Biomolecular Structure and Dynamics, 2017, 35, 78-91.	3.5	31
20	Novel calcium recognition constructions in proteins: Calcium blade and EF-hand zone. Biochemical and Biophysical Research Communications, 2017, 483, 958-963.	2.1	4
21	Modulation of linoleic acid-binding properties of human serum albumin by divalent metal cations. BioMetals, 2017, 30, 341-353.	4.1	9
22	In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium, 2017, 67, 53-64.	2.4	12
23	Derivative of Extremophilic 50S Ribosomal Protein L35Ae as an Alternative Protein Scaffold. PLoS ONE, 2017, 12, e0170349.	2.5	1
24	Expression, Purification, and Characterization of Interleukin-11 Orthologues. Molecules, 2016, 21, 1632.	3.8	3
25	Interleukin-11: A Multifunctional Cytokine with Intrinsically Disordered Regions. Cell Biochemistry and Biophysics, 2016, 74, 285-296.	1.8	14
26	Disorder in Milk Proteins: ? -Lactalbumin. Part A. Structural Properties and Conformational Behavior. Current Protein and Peptide Science, 2016, 17, 352-367.	1.4	11
27	Disorder in Milk Proteins: ?-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container―in the Anti-Tumorigenic Drugs, Liprotides. Current Protein and Peptide Science, 2016, 17, 612-628.	1.4	13
28	Disorder in Milk Proteins: α-Lactalbumin. Part C. Peculiarities of Metal Binding. Current Protein and Peptide Science, 2016, 17, 735-745.	1.4	13
29	Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS ONE, 2015, 10, e0134906.	2.5	2
30	Effects of osmolytes on protein-solvent interactions in crowded environment: Analyzing the effect of TMAO on proteins in crowded solutions. Archives of Biochemistry and Biophysics, 2015, 570, 66-74.	3.0	19
31	Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radical Biology and Medicine, 2015, 83, 283-295.	2.9	37
32	High-affinity interaction between interleukin-11 and S100P protein. Biochemical and Biophysical Research Communications, 2015, 468, 733-738.	2.1	15
33	Intrinsically disordered caldesmon binds calmodulin via the "buttons on a string―mechanism. PeerJ, 2015, 3, e1265.	2.0	9
34	Two Structural Motifs within Canonical EF-Hand Calcium-Binding Domains Identify Five Different Classes of Calcium Buffers and Sensors. PLoS ONE, 2014, 9, e109287.	2.5	61
35	Parvalbumin as a metal-dependent antioxidant. Cell Calcium, 2014, 55, 261-268.	2.4	9
36	Generic Structures of Cytotoxic Liprotides: Nano‣ized Complexes with Oleic Acid Cores and Shells of Disordered Proteins. ChemBioChem, 2014, 15, 2693-2702.	2.6	37

#	Article	IF	CITATIONS
37	Structural Characterization of More Potent Alternatives to HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid. Biochemistry, 2013, 52, 6286-6299.	2.5	13
38	The Use of UV–Vis Absorption Spectroscopy for Studies of Natively Disordered Proteins. Methods in Molecular Biology, 2012, 895, 421-433.	0.9	1
39	The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium, 2012, 52, 366-376.	2.4	25
40	Oleic acid is a key cytotoxic component of HAMLET-like complexes. Biological Chemistry, 2012, 393, 85-92.	2.5	67
41	Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids, 2012, 42, 1435-1442.	2.7	46
42	Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochemical Journal, 2011, 435, 441-450.	3.7	56
43	A novel method for preparation of HAMLET-like protein complexes. Biochimie, 2011, 93, 1495-1501.	2.6	44
44	Intrinsic disorder in S100 proteins. Molecular BioSystems, 2011, 7, 2164.	2.9	28
45	Analysis of Ca ²⁺ /Mg ²⁺ selectivity in α″actalbumin and Ca ²⁺ â€binding lysozyme reveals a distinct Mg ²⁺ â€specific site in lysozyme. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2609-2624.	2.6	9
46	Metal-controlled interdomain cooperativity in parvalbumins. Cell Calcium, 2009, 46, 163-175.	2.4	22
47	Interaction of antitumor α-lactalbumin—oleic acid complexes with artificial and natural membranes. Journal of Bioenergetics and Biomembranes, 2009, 41, 229-237.	2.3	36
48	Cell signaling, beyond cytosolic calcium in eukaryotes. Journal of Inorganic Biochemistry, 2009, 103, 77-86.	3.5	43
49	Sequence microheterogeneity of parvalbumin pl 5.0 of pike: A mass spectrometric study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 129-136.	2.3	12
50	Apoâ€parvalbumin as an intrinsically disordered protein. Proteins: Structure, Function and Bioinformatics, 2008, 72, 822-836.	2.6	51
51	Who Is Mr. HAMLET? Interaction of Human α-Lactalbumin with Monomeric Oleic Acid. Biochemistry, 2008, 47, 13127-13137.	2.5	80
52	Recoverin as a Redox-Sensitive Protein. Journal of Proteome Research, 2007, 6, 1855-1863.	3.7	34
53	The Use of the Free Metal – Temperature â€~Phase Diagrams' for Studies of Single Site Metal Binding Proteins. Protein Journal, 2007, 26, 1-12.	1.6	5
54	Calcium-binding and temperature induced transitions in equine lysozyme: New insights from the pCa-temperature "phase diagrams― Proteins: Structure, Function and Bioinformatics, 2006, 65, 984-998.	2.6	11

#	Article	IF	CITATIONS
55	Tuning of a Neuronal Calcium Sensor. Journal of Biological Chemistry, 2006, 281, 37594-37602.	3.4	53
56	How to improve nature: study of the electrostatic properties of the surface of α-lactalbumin. Protein Engineering, Design and Selection, 2005, 18, 425-433.	2.1	40
57	Conversion of Human α-lactalbumin to an Apo-like State in the Complexes with Basic Poly-Amino Acids:Â Toward Understanding of the Molecular Mechanism of Antitumor Action of HAMLET. Journal of Proteome Research, 2005, 4, 564-569.	3.7	20
58	No Need To Be HAMLET or BAMLET To Interact with Histones:  Binding of Monomeric α-Lactalbumin to Histones and Basic Poly-Amino Acids. Biochemistry, 2004, 43, 5575-5582.	2.5	45
59	Ultraviolet illumination-induced reduction of α-lactalbumin disulfide bridges. Proteins: Structure, Function and Bioinformatics, 2003, 51, 498-503.	2.6	45
60	Natively unfolded Câ€ŧerminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins: Structure, Function and Bioinformatics, 2003, 53, 855.	2.6	97
61	Recoverin Is a Zinc-Binding Protein. Journal of Proteome Research, 2003, 2, 51-57.	3.7	44
62	Effect of Zinc and Temperature on the Conformation of the γ Subunit of Retinal Phosphodiesterase:  A Natively Unfolded Protein. Journal of Proteome Research, 2002, 1, 149-159.	3.7	66
63	Conformational Prerequisites for α-Lactalbumin Fibrillationâ€. Biochemistry, 2002, 41, 12546-12551.	2.5	211
64	Human α-fetoprotein as a Zn2+-binding protein. Tight cation binding is not accompanied by global changes in protein structure and stability. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 1-10.	3.8	8
65	Mutating aspartate in the calcium-binding site of $\hat{I}\pm$ -lactalbumin: effects on the protein stability and cation binding. Protein Engineering, Design and Selection, 2001, 14, 785-789.	2.1	20
66	Zinc binding in bovine ?-lactalbumin: Sequence homology may not be a predictor of subtle functional features. , 2000, 40, 106-111.		11
67	Zn2+-Mediated Structure Formation and Compaction of the "Natively Unfolded―Human Prothymosin α. Biochemical and Biophysical Research Communications, 2000, 267, 663-668.	2.1	72
68	α-Lactalbumin: structure and function. FEBS Letters, 2000, 473, 269-274.	2.8	430
69	Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Protein Engineering, Design and Selection, 2000, 13, 783-790.	2.1	43
70	Fine tuning the N-terminus of a calcium binding protein: ?-lactalbumin. , 1999, 37, 65-72.		25
71	Interactions of α-Lactalbumin with Fatty Acids and Spin Label Analogs. Journal of Biological Chemistry, 1997, 272, 30812-30816.	3.4	58
72	pH-induced transition and Zn2+-binding properties of bovine prolactin1. FEBS Letters, 1997, 405, 273-276.	2.8	16

EUGENE A PERMYAKOV

#	Article	IF	CITATIONS
73	Cooperative thermal transitions of bovine and human apo-α-lactalbumins: evidence for a new intermediate state. FEBS Letters, 1997, 412, 625-628.	2.8	56
74	Applications of scanning microcalorimetry in biophysics and biochemistry. Thermochimica Acta, 1997, 302, 165-180.	2.7	49
75	Pb2 and Hg2 binding to α-lactalbumin. IUBMB Life, 1996, 39, 1255-1265.	3.4	3
76	Study of tyrosine-containing mutants of ribosomal protein from Escherichia coli. Biophysical Chemistry, 1996, 62, 39-45.	2.8	5
77	Membraneâ€bound states of αâ€lactalbumin: Implications for the protein stability and conformation. Protein Science, 1996, 5, 1394-1405.	7.6	53
78	Interactions of (Ala*Ala*Lys*Pro)n and (Lys*Lys*Ser*Pro)n with DNA. Proposed coiled-coil structure of AlgR3 and AlgP from Pseudomonas aeruginosa. Protein Engineering, Design and Selection, 1995, 8, 63-70.	2.1	15
79	Co2+ binding to α-lactalbumin. The Protein Journal, 1994, 13, 277-281.	1.1	23
80	Effects of Zn(II) on galactosyltransferase activity. The Protein Journal, 1993, 12, 633-638.	1.1	14
81	Proteolytic digestion of ?-lactalbumin: Physiological implications. The Protein Journal, 1992, 11, 51-57.	1.1	29
82	Interaction of cupric ion with parvalbumin. Biophysical Chemistry, 1992, 42, 189-194.	2.8	5
83	Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1. FEBS Journal, 1992, 209, 829-835.	0.2	52
84	Calcium-regulated interactions of human α-lactalbumin with bee venom melittin. Biophysical Chemistry, 1991, 39, 111-117.	2.8	19
85	Spectrofluorimetric studies on C-terminal 34 kDa fragment of caldesmon. Biophysical Chemistry, 1991, 40, 181-188.	2.8	19
86	Noncovalent complex between domain AB and domains CD*EF of parvalbumin. BBA - Proteins and Proteomics, 1991, 1076, 67-70.	2.1	40
87	Binding of Zn(II) ions to ?-lactalbumin. The Protein Journal, 1991, 10, 577-584.	1.1	49
88	Domain structure of myosin subfragment-1. FEBS Letters, 1990, 264, 176-178.	2.8	23
89	Environment of tryptophan residues in various conformational states of $\hat{I}\pm$ -lactalbumin studied by time-resolved and steady-state fluorescence spectrosc. Biophysical Chemistry, 1988, 30, 105-112.	2.8	29
90	Interaction of α-lactalbumin with Cu2+. Biophysical Chemistry, 1988, 32, 37-42.	2.8	27

#	Article	IF	CITATIONS
91	Study of pH- and temperature-induced transitions in F-protein (phosphofructokinase) by spectroscopy and microcalorimetry methods. BBA - Proteins and Proteomics, 1988, 953, 128-133.	2.1	4
92	Stopped-flow kinetic studies of Ca(II) and Mg(II) dissociation in cod parvalbumin and bovine α-lactalbumin. Biophysical Chemistry, 1987, 28, 225-233.	2.8	36
93	Cation binding effects on the pH, thermal and urea denaturation transitions in α-lactalbumin. Biophysical Chemistry, 1985, 21, 21-31.	2.8	126
94	Effects of cation binding on the thermal transitions in calmodulin. BBA - Proteins and Proteomics, 1985, 830, 288-295.	2.1	15
95	Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophysical Chemistry, 1984, 19, 265-271.	2.8	83
96	Sodium and potassium binding to parvalbumins measured by means of intrinsic protein fluorescence. BBA - Proteins and Proteomics, 1983, 749, 185-191.	2.1	9
97	A spectrofluorometric study of the environment of tryptophans in bacteriorhodopsin. Biophysical Chemistry, 1983, 18, 145-152.	2.8	18
98	Binding of nucleotides to parvalbumins. Biochemical and Biophysical Research Communications, 1982, 105, 1059-1065.	2.1	6
99	Intrinsic fluorescence spectra of a tryptophan-containing parvalbumin as a function of thermal, pH and urea denaturation. Biophysical Chemistry, 1982, 15, 19-26.	2.8	16
100	Calcium binding to α-lactalbumin: Structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochemical and Biophysical Research Communications, 1981, 100, 191-197.	2.1	135
101	α-Lactalbumin binds magnesium ions: Study by means of intrinsic fluorescence technique. Biochemical and Biophysical Research Communications, 1981, 102, 1-7.	2.1	41
102	Fluorescence Studies of the Calcium Binding to Whiting (Gadus merlangus) Parvalbumin. FEBS Journal, 1980, 109, 307-315.	0.2	77