Lan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6749026/publications.pdf

Version: 2024-02-01

265191 394390 1,779 42 63 19 citations h-index g-index papers 2100 67 67 67 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Integrated flexible chalcogenide glass photonic devices. Nature Photonics, 2014, 8, 643-649.	31.4	291
2	Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11, 798-805.	31.4	190
3	Flexible integrated photonics: where materials, mechanics and optics meet [Invited]. Optical Materials Express, 2013, 3, 1313.	3.0	153
4	Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials, 2014, 15, 014603.	6.1	143
5	Monolithically integrated stretchable photonics. Light: Science and Applications, 2018, 7, 17138-17138.	16.6	94
6	Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Optics Letters, 2013, 38, 1470.	3.3	87
7	Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films. Optical Materials Express, 2012, 2, 1723.	3.0	73
8	Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 2016, 41, 3090.	3.3	65
9	A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects. Journal of Lightwave Technology, 2013, 31, 4080-4086.	4.6	57
10	Twoâ€Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. Small Science, 2021, 1, 2000053.	9.9	56
11	Highâ€Performance, Highâ€Indexâ€Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Nonâ€planar Substrates. Advanced Optical Materials, 2014, 2, 478-486.	7.3	54
12	High-performance flexible waveguide-integrated photodetectors. Optica, 2018, 5, 44.	9.3	54
13	Solution Processing and Resistâ€Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration. Advanced Optical Materials, 2014, 2, 759-764.	7.3	47
14	Foldable and Cytocompatible Sol-gel TiO2 Photonics. Scientific Reports, 2015, 5, 13832.	3.3	36
15	High-Performance Waveguide-Integrated Bi ₂ O ₂ Se Photodetector for Si Photonic Integrated Circuits. ACS Nano, 2021, 15, 15982-15991.	14.6	33
16	Demonstration of mid-infrared waveguide photonic crystal cavities. Optics Letters, 2013, 38, 2779.	3.3	32
17	ZrO_2-TiO_2 thin films: a new material system for mid-infrared integrated photonics. Optical Materials Express, 2013, 3, 1537.	3.0	30
18	A new twist on glass: A brittle material enabling flexible integrated photonics. International Journal of Applied Glass Science, 2017, 8, 61-68.	2.0	27

#	Article	IF	CITATIONS
19	Fast thermo-optical modulators with doped-silicon heaters operating at 2 \hat{l} /4m. Optics Express, 2021, 29, 23508.	3.4	27
20	Sm0.2Ce0.8O1.9/Y0.25Bi0.75O1.5 bilayered electrolytes for low-temperature SOFCs with Ag-Y0.25Bi0.75O1.5 composite cathodes. Solid State Ionics, 2011, 192, 557-560.	2.7	20
21	High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Optics Express, 2022, 30, 3866.	3.4	19
22	Waveguide-Integrated PdSe ₂ Photodetector over a Broad Infrared Wavelength Range. Nano Letters, 2022, 22, 6816-6824.	9.1	18
23	High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Physics and Technology, 2021, 116, 103792.	2.9	17
24	Impact of Stoichiometry on Structural and Optical Properties of Sputter Deposited Multicomponent Tellurite Glass Films. Journal of the American Ceramic Society, 2015, 98, 1731-1738.	3.8	15
25	Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited]. Chinese Optics Letters, 2021, 19, 071301.	2.9	14
26	Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR. PhotoniX, 2022, 3, .	13.5	14
27	High-performance graphene-integrated thermo-optic switch: design and experimental validation [Invited]. Optical Materials Express, 2020, 10, 387.	3.0	13
28	Silicon Thermo-Optic Switches with Graphene Heaters Operating at Mid-Infrared Waveband. Nanomaterials, 2022, 12, 1083.	4.1	13
29	Free-spectral-range-free filters with ultrawide tunability across the S + C + L band. Photonics Res 2021, 9, 1013.	search, 7.0	12
30	Magnetron-sputtered and thermal-evaporated low-loss Sb-Se phase-change films in non-volatile integrated photonics. Optical Materials Express, 2022, 12, 2815.	3.0	12
31	3D integrated photonics platform with deterministic geometry control. Photonics Research, 2020, 8, 194.	7.0	10
32	Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, $\{[Ni(dpbz)][Ni(CN)4]\}n$, $dpbz = 1,4$ -bis(4-pyridyl)benzene. Journal of Applied Physics, 2018, 123, 245105.	2.5	9
33	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8
34	Monolithic chalcogenide glass waveguide integrated interband cascaded laser. Optical Materials Express, 2021, 11, 2869.	3.0	8
35	High-performance silicon PIN diode switches in the 2-µm wave band. Optics Letters, 2022, 47, 2758.	3.3	8
36	Flexible Photonic Probes for New-Generation Brain–Computer Interfaces. Accounts of Materials Research, 2021, 2, 315-318.	11.7	5

#	Article	IF	CITATIONS
37	Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration. , 2013, ,		2
38	ZrO < sub > 2 < / sub > -TiO < sub > 2 < / sub > thin films and resonators for mid-infrared integrated photonics. Proceedings of SPIE, 2014, , .	0.8	2
39	Narrow-bandwidth Bragg grating filter based on Ge-Sb-Se chalcogenide glasses. Optics Express, 2022, 30, 12228.	3.4	2
40	Flexible passive integrated photonic devices with superior optical and mechanical performance. Optics Express, 2022, 30, 26534.	3.4	2
41	Chalcogenide glass based integrated photonics. Proceedings of SPIE, 2012, , .	0.8	1
42	High-Q Mid-Infrared Chalcogenide Glass Resonators for Chemical Sensing. , 2014, , .		1
43	Chip-to-chip optical interconnects based on flexible integrated photonics. Proceedings of SPIE, 2014, , .	0.8	1
44	Substrate-blind photonic integration based on high-index glass materials. , 2014, , .		1
45	Monolithic High-Index-Contrast Stretchable Photonics. , 2016, , .		1
46	Stretchable Integrated Microphotonics. , 2018, , .		1
47	Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators on nonconventional plastic substrates. , 2013, , .		0
48	Cavity-enhanced mid-infrared on-chip chemical sensing using high-Q chalcogenide glass resonators. , 2013, , .		0
49	A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. , 2013, , .		0
50	245th American Chemical Society Meeting and Exposition (ACS Spring 2013). Powder Diffraction, 2013, 28, 240-241.	0.2	0
51	Planar chalcogenide glass mid-infrared photonics. , 2014, , .		0
52	Demonstration of high-performance, sub-micron chalcogenide glass photonic devices by thermal nanoimprint. Proceedings of SPIE, 2014, , .	0.8	0
53	ZrO2-TiO2 Thin Films and Resonators for Mid-Infrared Integrated Photonics. , 2014, , .		0
54	3D Integrated Photonics Platform with Deterministic Geometry Control., 2021,,.		0

#	Article	IF	CITATIONS
55	A universal approach for photonic integration on flexible substrates. , 2021, , .		O
56	High-Q Mid-Infrared Chalcogenide Glass-On-Silicon Resonators for Spectroscopic Chemical Sensing. , 2013, , .		0
57	Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators. , 2013, , .		O
58	Substrate-blind photonic integration. , 2015, , .		0
59	Chalcogenide Glass-on-Graphene Photonics. , 2017, , .		O
60	Flexible waveguide-integrated photodetectors. , 2017, , .		0
61	Integrated photonics put at full stretch: flexible and stretchable photonic devices enabled by optical and mechanical co-design. , 2019, , .		0
62	A 3-D integrated photonics platform with deterministic geometry control. , 2020, , .		0
63	Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics. Photonics, 2022, 9, 94.	2.0	0