Zane B Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocannabinoid signaling of homeostatic status modulates functional connectivity in reward and salience networks. Psychopharmacology, 2022, 239, 1311-1319.	1.5	6
2	Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. ELife, 2022, 11, .	2.8	32
3	Appetite to learn: An allostatic role for AgRP neurons in the maintenance of energy balance. Current Opinion in Endocrine and Metabolic Research, 2022, 24, 100337.	0.6	7
4	In Vivo Photometry Reveals Insulin and 2-Deoxyglucose Maintain Prolonged Inhibition of VMH Vglut2 Neurons in Male Mice. Endocrinology, 2022, 163, .	1.4	1
5	Hypothalamic effective connectivity at rest is associated with body weight and energy homeostasis. Network Neuroscience, 2022, 6, 1316-1333.	1.4	0
6	Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance. Science Advances, 2021, 7, .	4.7	14
7	Hypothalamic insulin signalling as a nexus regulating mood and metabolism. Journal of Neuroendocrinology, 2021, 33, e12939.	1.2	6
8	Insulin as a neuroendocrine hormone. Journal of Neuroendocrinology, 2021, 33, e12966.	1.2	4
9	An open-source device for measuring food intake and operant behavior in rodent home-cages. ELife, 2021, 10, .	2.8	56
10	Symptoms of Addictive Eating: What Do Different Health Professions Think?. Behavioral Sciences (Basel, Switzerland), 2021, 11, 60.	1.0	0
11	The Hunger Games: Homeostatic State-Dependent Fluctuations in Disinhibition Measured with a Novel Gamified Test Battery. Nutrients, 2021, 13, 2001.	1.7	3
12	Neural network modelling reveals changes in directional connectivity between cortical and hypothalamic regions with increased BMI. International Journal of Obesity, 2021, 45, 2447-2454.	1.6	11
13	Neurobiology: How to ask a mouse if it's hungry. Current Biology, 2021, 31, R1056-R1058.	1.8	0
14	Health Professionals' and Health Professional Trainees' Views on Addictive Eating Behaviours: A Cross-Sectional Survey. Nutrients, 2020, 12, 2860.	1.7	12
15	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19, 609-633.	21.5	441
16	Unacylated-Ghrelin Impairs Hippocampal Neurogenesis and Memory in Mice and Is Altered in Parkinson's Dementia in Humans. Cell Reports Medicine, 2020, 1, 100120.	3.3	15
17	Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metabolism, 2020, 32, 751-766.e11.	7.2	41
18	Growth changes after inhalant abuse and toluene exposure: A systematic review and meta-analysis of human and animal studies. Human and Experimental Toxicology, 2019, 38, 157-172.	1.1	13

#	Article	IF	CITATIONS
19	The effect of adolescent inhalant abuse on energy balance and growth. Pharmacology Research and Perspectives, 2019, 7, e00498.	1.1	16
20	Ghrelin: What's the function?. Journal of Neuroendocrinology, 2019, 31, e12772.	1.2	5
21	Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease. Trends in Endocrinology and Metabolism, 2019, 30, 844-859.	3.1	33
22	Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Reports, 2019, 28, 2905-2922.e5.	2.9	54
23	Calorie restriction activates new adult born olfactoryâ€bulb neurones in a ghrelinâ€dependent manner but acylâ€ghrelin does not enhance subventricular zone neurogenesis. Journal of Neuroendocrinology, 2019, 31, e12755.	1.2	14
24	Glucose availability regulates ghrelinâ€induced food intake in the ventral tegmental area. Journal of Neuroendocrinology, 2019, 31, e12696.	1.2	8
25	Altered body weight associated with substance abuse: a look beyond food intake. Addiction Research and Theory, 2019, 27, 76-84.	1.2	5
26	The Ghrelin-AgRP Neuron Nexus in Anorexia Nervosa: Implications for Metabolic and Behavioral Adaptations. Frontiers in Nutrition, 2019, 6, 190.	1.6	15
27	The next big LEAP2 understanding ghrelin function. Journal of Clinical Investigation, 2019, 129, 3542-3544.	3.9	13
28	Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 161-181.	1.5	89
29	AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral Nutrient Partitioning. Cell Reports, 2018, 22, 1745-1759.	2.9	30
30	Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease?. Neuropharmacology, 2018, 136, 317-326.	2.0	31
31	The role of corticostriatal–hypothalamic neural circuits in feeding behaviour: implications for obesity. Journal of Neurochemistry, 2018, 147, 715-729.	2.1	20
32	Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index. International Journal of Obesity, 2018, 42, 448-454.	1.6	29
33	Glucose Availability Predicts the Feeding Response to Ghrelin in Male Mice, an Effect Dependent on AMPK in AgRP Neurons. Endocrinology, 2018, 159, 3605-3614.	1.4	22
34	Adolescent Inhalant Abuse Results in Adrenal Dysfunction and a Hypermetabolic Phenotype with Persistent Growth Impairments. Neuroendocrinology, 2018, 107, 340-354.	1.2	6
35	Carnitine Acetyltransferase in AgRP Neurons Is Required for the Homeostatic Adaptation to Restricted Feeding in Male Mice. Endocrinology, 2018, 159, 2473-2483.	1.4	8
36	AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. ELife, 2018, 7, .	2.8	58

#	Article	IF	CITATIONS
37	Carnitine acetyltransferase (Crat) in hungerâ€sensing AgRP neurons permits adaptation to calorie restriction. FASEB Journal, 2018, 32, 6923-6933.	0.2	16
38	Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Frontiers in Endocrinology, 2018, 9, 815.	1.5	15
39	Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neuroscience and Biobehavioral Reviews, 2017, 73, 255-275.	2.9	30
40	The Ghrelin/GOAT System Regulates Obesity-Induced Inflammation in Male Mice. Endocrinology, 2017, 158, 2179-2189.	1.4	15
41	Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1â€40) administration in mice. Journal of Neuroendocrinology, 2017, 29, .	1.2	47
42	Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes, 2017, 66, 314-324.	0.3	27
43	Metabolic diseases: Breakthrough discoveries in diabetes and obesity. Journal of Neuroendocrinology, 2017, 29, e12536.	1.2	0
44	Altered cross-talk between the hypothalamus and non-homeostatic regions linked to obesity and difficulty to lose weight. Scientific Reports, 2017, 7, 9951.	1.6	29
45	The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Molecular Metabolism, 2017, 6, 882-896.	3.0	46
46	A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 2017, 26, 375-393.e7.	7.2	42
47	Less is more: Caloric regulation of neurogenesis and adult brain function. Journal of Neuroendocrinology, 2017, 29, e12512.	1.2	16
48	Early life disruption to the ghrelin system with over-eating is resolved in adulthood in male rats. Neuropharmacology, 2017, 113, 21-30.	2.0	23
49	Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor. International Journal of Molecular Sciences, 2017, 18, 558.	1.8	7
50	Food Seeking in a Risky Environment: A Method for Evaluating Risk and Reward Value in Food Seeking and Consumption in Mice. Frontiers in Neuroscience, 2017, 11, 24.	1.4	17
51	Ghrelinâ€related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 468-475.	0.9	3
52	Protective actions of des-acylated ghrelin on brain injury and blood–brain barrier disruption after stroke in mice. Clinical Science, 2016, 130, 1545-1558.	1.8	24
53	RABL2 Is Required for Hepatic Fatty Acid Homeostasis and Its Dysfunction Leads to Steatosis and a Diabetes-Like State. Endocrinology, 2016, 157, 4732-4743.	1.4	16
54	Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress. Endocrinology, 2016, 157, 3946-3957.	1.4	35

#	Article	IF	CITATIONS
55	Acylated but not desâ€acyl ghrelin is neuroprotective in an <scp>MPTP</scp> mouse model of Parkinson's disease. Journal of Neurochemistry, 2016, 137, 460-471.	2.1	44
56	Effects of Peripheral Neurotensin on Appetite Regulation and Its Role in Gastric Bypass Surgery. Endocrinology, 2016, 157, 3482-3492.	1.4	58
57	The Neurobiology of "Food Addiction―and Its Implications for Obesity Treatment and Policy. Annual Review of Nutrition, 2016, 36, 105-128.	4.3	151
58	Central Administration of the Ciliary Neurotrophic Factor Analogue, Axokine, Does Not Play a Role in Long-Term Energy Homeostasis in Adult Mice. Neuroendocrinology, 2016, 103, 223-229.	1.2	4
59	Cinnamon users with prediabetes have a better fasting working memory: a cross-sectional function study. Nutrition Research, 2016, 36, 305-310.	1.3	5
60	Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner. Psychoneuroendocrinology, 2016, 63, 198-207.	1.3	89
61	Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 3049-3063.	1.7	128
62	Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends in Endocrinology and Metabolism, 2016, 27, 54-63.	3.1	109
63	Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons. PLoS ONE, 2016, 11, e0159381.	1.1	63
64	Ghrelin is the metabolic link connecting calorie restriction to neuroprotection. Neural Regeneration Research, 2016, 11, 1228.	1.6	6
65	Chronic intermittent toluene inhalation in adolescent rats results in metabolic dysfunction with altered glucose homeostasis. British Journal of Pharmacology, 2015, 172, 5174-5187.	2.7	17
66	Voluntary Exercise Can Ameliorate Insulin Resistance by Reducing iNOS-Mediated S-Nitrosylation of Akt in the Liver in Obese Rats. PLoS ONE, 2015, 10, e0132029.	1.1	25
67	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	3.0	810
68	Diet-induced obesity causes ghrelin resistance in reward processing tasks. Psychoneuroendocrinology, 2015, 62, 114-120.	1.3	49
69	Ghrelin's Role in the Hypothalamic-Pituitary-Adrenal Axis Stress Response: Implications for Mood Disorders. Biological Psychiatry, 2015, 78, 19-27.	0.7	103
70	Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat. Cell, 2015, 160, 88-104.	13.5	308
71	Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s). Endocrinology, 2015, 156, 280-290.	1.4	28
72	A Stereological Analysis of NPY, POMC, Orexin, GFAP Astrocyte, and Iba1 Microglia Cell Number and Volume in Diet-Induced Obese Male Mice. Endocrinology, 2015, 156, 1701-1713.	1.4	66

#	Article	IF	CITATIONS
73	Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis. Molecular and Cellular Endocrinology, 2015, 418, 9-16.	1.6	21
74	Acyl Ghrelin Acts in the Brain to Control Liver Function and Peripheral Glucose Homeostasis in Male Mice. Endocrinology, 2015, 156, 858-868.	1.4	32
75	Neonatal ghrelin programs development of hypothalamic feeding circuits. Journal of Clinical Investigation, 2015, 125, 846-858.	3.9	126
76	Neuroendocrine mechanisms that connect feeding behavior and stress. Frontiers in Neuroscience, 2014, 8, 312.	1.4	10
77	Actions of NPY, and Its Y1 and Y2 Receptors on Pulsatile Growth Hormone Secretion during the Fed and Fasted State. Journal of Neuroscience, 2014, 34, 16309-16319.	1.7	36
78	Exercise Training does not Enhance Hypothalamic Responsiveness to Leptin or Ghrelin in Male Mice. Journal of Neuroendocrinology, 2014, 26, 68-79.	1.2	14
79	The Temporal Pattern of cfos Activation in Hypothalamic, Cortical, and Brainstem Nuclei in Response to Fasting and Refeeding in Male Mice. Endocrinology, 2014, 155, 840-853.	1.4	90
80	Neuroanatomical characterization of a growth hormone secretagogue receptorâ€green fluorescent protein reporter mouse. Journal of Comparative Neurology, 2014, 522, 3644-3666.	0.9	131
81	High cortisol responses identify propensity for obesity that is linked to thermogenesis in skeletal muscle. FASEB Journal, 2014, 28, 35-44.	0.2	18
82	Evidence That Diet-Induced Hyperleptinemia, but Not Hypothalamic Gliosis, Causes Ghrelin Resistance in NPY/AgRP Neurons of Male Mice. Endocrinology, 2014, 155, 2411-2422.	1.4	57
83	Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Research and Treatment, 2014, 147, 193-201.	1.1	30
84	Hypothalamic Neurogenesis Is Not Required for the Improved Insulin Sensitivity Following Exercise Training. Diabetes, 2014, 63, 3647-3658.	0.3	14
85	The Role of the Ghrelin Receptor in Appetite and Energy Metabolism. , 2014, , 35-52.		2
86	Turmeric improves post-prandial working memory in pre-diabetes independent of insulin. Asia Pacific Journal of Clinical Nutrition, 2014, 23, 581-91.	0.3	23
87	Calorie-Restricted Weight Loss Reverses High-Fat Diet-Induced Ghrelin Resistance, Which Contributes to Rebound Weight Gain in a Ghrelin-Dependent Manner. Endocrinology, 2013, 154, 709-717.	1.4	74
88	An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice. Peptides, 2013, 47, 45-53.	1.2	24
89	AMPK and the neuroendocrine regulation of appetite and energy expenditure. Molecular and Cellular Endocrinology, 2013, 366, 215-223.	1.6	79
90	The hormonal signature of energy deficit: Increasing the value of food reward. Molecular Metabolism, 2013, 2, 329-336.	3.0	41

#	Article	IF	CITATIONS
91	Distribution of secretagogin-containing neurons in the basal forebrain of mice, with special reference to the cholinergic corticopetal system. Brain Research Bulletin, 2013, 94, 1-8.	1.4	13
92	Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabolic neuroprotection. Therapeutic Advances in Endocrinology and Metabolism, 2013, 4, 25-36.	1.4	66
93	Hypothalamic WNT Signalling Is Impaired During Obesity and Reinstated by Leptin Treatment in Male Mice. Endocrinology, 2013, 154, 4737-4745.	1.4	49
94	The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury. Brain Sciences, 2013, 3, 344-359.	1.1	28
95	Endogenous ghrelin's role in hippocampal neuroprotection after global cerebral ischemia: does endogenous ghrelin protect against global stroke?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R980-R990.	0.9	21
96	Postprandial heat production in skeletal muscle is associated with altered mitochondrial function and altered futile calcium cycling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R1071-R1079.	0.9	19
97	Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Current Neuropharmacology, 2012, 10, 344-353.	1.4	38
98	Ghrelin Receptor Expression and Colocalization with Anterior Pituitary Hormones Using a GHSR-GFP Mouse Line. Endocrinology, 2012, 153, 5452-5466.	1.4	37
99	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2012, 15, 925-926.	7.2	1
100	Ghrelin Regulates the Hypothalamic-Pituitary-Adrenal Axis and Restricts Anxiety After Acute Stress. Biological Psychiatry, 2012, 72, 457-465.	0.7	196
101	Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Current Neuropharmacology, 2012, 10, 344-353.	1.4	21
102	Ghrelin: Neuropeptide Regulator of Metabolism. , 2012, , 111-130.		0
103	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2011, 14, 684-699.	7.2	162
104	Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience, 2011, 193, 1-9.	1.1	107
105	The extra-hypothalamic actions of ghrelin on neuronal function. Trends in Neurosciences, 2011, 34, 31-40.	4.2	172
106	Central mechanisms involved in the orexigenic actions of ghrelin. Peptides, 2011, 32, 2248-2255.	1.2	234
107	A Recent Update on the Role of Ghrelin in Glucose Homeostasis. Current Diabetes Reviews, 2011, 7, 201-207.	0.6	26
108	Diet-Induced Obesity Attenuates Fasting-Induced Hyperphagia. Journal of Neuroendocrinology, 2011, 23, 620-626.	1.2	39

#	Article	IF	CITATIONS
109	Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. Journal of Cellular and Molecular Medicine, 2011, 15, 747-755.	1.6	146
110	GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiology of Disease, 2011, 43, 152-162.	2.1	20
111	Pigment Epithelium–Derived Factor Regulates Lipid Metabolism via Adipose Triglyceride Lipase. Diabetes, 2011, 60, 1458-1466.	0.3	106
112	Metabolic Status Regulates Ghrelin Function on Energy Homeostasis. Neuroendocrinology, 2011, 93, 48-57.	1.2	111
113	Central Leptin Activates Mitochondrial Function and Increases Heat Production in Skeletal Muscle. Endocrinology, 2011, 152, 2609-2618.	1.4	44
114	Diet-Induced Obesity Causes Ghrelin Resistance in Arcuate NPY/AgRP Neurons. Endocrinology, 2010, 151, 4745-4755.	1.4	254
115	Uncoupling Protein-2 Decreases the Lipogenic Actions of Ghrelin. Endocrinology, 2010, 151, 2078-2086.	1.4	44
116	Uncoupling Protein-2 and the Potential Link Between Metabolism and Longevity. Current Aging Science, 2010, 3, 102-112.	0.4	34
117	Uncoupling protein-2 regulates lifespan in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E621-E627.	1.8	98
118	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	1.7	245
119	Fuel utilization by hypothalamic neurons: roles for ROS. Trends in Endocrinology and Metabolism, 2009, 20, 78-87.	3.1	129
120	UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 2008, 454, 846-851.	13.7	633
121	Tasteless Food Reward. Neuron, 2008, 57, 806-808.	3.8	5
122	Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal of Neuroscience, 2008, 28, 10766-10771.	1.7	147
123	A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2. Cell Metabolism, 2007, 5, 21-33.	7.2	264
124	Uncoupling protein-2 promotes nigrostriatal dopamine neuronal function. European Journal of Neuroscience, 2006, 24, 32-36.	1.2	35
125	Transforming growth factor beta2 haploinsufficient mice develop age-related nigrostriatal dopamine deficits. Neurobiology of Disease, 2006, 21, 568-575.	2.1	33
126	Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal of Clinical Investigation, 2006, 116, 3229-3239.	3.9	836

#	Article	IF	CITATIONS
127	Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. Journal of Neurochemistry, 2005, 93, 493-501.	2.1	99
128	Neuroendocrine Regulation of Prolactin Secretion During Late Pregnancy: Easing the Transition into Lactation. Journal of Neuroendocrinology, 2005, 17, 466-473.	1.2	39
129	Mitochondrial uncoupling proteins in the cns: in support of function and survival. Nature Reviews Neuroscience, 2005, 6, 829-840.	4.9	321
130	Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 184-191.	1.7	181
131	Analysis of mRNAs that are enriched in the post-synaptic domain of the neuromuscular junction. Molecular and Cellular Neurosciences, 2005, 30, 173-185.	1.0	15
132	The Roles of Dopamine and the Neurointermediate Lobe of the Pituitary in the Regulation of Prolactin Secretion During Late Pregnancy in Rats. Journal of Neuroendocrinology, 2004, 16, 859-865.	1.2	18
133	Opioid Receptor Subtypes Involved in the Regulation of Prolactin Secretion During Pregnancy and Lactation. Journal of Neuroendocrinology, 2003, 15, 227-236.	1.2	56
134	Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. Journal of Molecular Endocrinology, 2003, 31, 221-232.	1.1	79
135	Opioid control of prolactin secretion in late pregnant rats is mediated by tuberoinfundibular dopamine neurons. Neuroscience Letters, 2002, 328, 60-64.	1.0	22
136	Prolactin Receptors in the Brain during Pregnancy and Lactation: Implications for Behavior. Hormones and Behavior, 2001, 40, 115-124.	1.0	66
137	Dissociation of Prolactin Secretion from Tuberoinfundibular Dopamine Activity in Late Pregnant Rats*. Endocrinology, 2001, 142, 2719-2724.	1.4	54
138	Dissociation of Prolactin Secretion from Tuberoinfundibular Dopamine Activity in Late Pregnant Rats.		19

9