
## Asegun Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748822/publications.pdf Version: 2024-02-01



ASECUN HENDY

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010, 5, 251-255.                                        | 31.5 | 718       |
| 2  | High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations.<br>Physical Review Letters, 2008, 101, 235502.   | 7.8  | 337       |
| 3  | High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotechnology, 2014,<br>9, 384-390.                               | 31.5 | 327       |
| 4  | Five thermal energy grand challenges for decarbonization. Nature Energy, 2020, 5, 635-637.                                                     | 39.5 | 137       |
| 5  | Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations.<br>Physical Review B, 2009, 79, .                 | 3.2  | 124       |
| 6  | Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nature Methods, 2016, 13, 143-146.                     | 19.0 | 113       |
| 7  | Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis.<br>New Journal of Physics, 2016, 18, 013028.  | 2.9  | 112       |
| 8  | Thermophotovoltaic efficiency of 40%. Nature, 2022, 604, 287-291.                                                                              | 27.8 | 108       |
| 9  | 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Physical Review B, 2010, 82, .             | 3.2  | 101       |
| 10 | THERMAL TRANSPORT IN POLYMERS. Annual Review of Heat Transfer, 2014, 17, 485-520.                                                              | 1.0  | 100       |
| 11 | Thermal energy grid storage using multi-junction photovoltaics. Energy and Environmental Science, 2019, 12, 334-343.                           | 30.8 | 93        |
| 12 | Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane. Journal of Applied Physics, 2011, 109, .                    | 2.5  | 87        |
| 13 | Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration.<br>Scientific Reports, 2016, 6, 23139.           | 3.3  | 83        |
| 14 | A method for distinguishing between propagons, diffusions, and locons. Journal of Applied Physics, 2016, 120, .                                | 2.5  | 77        |
| 15 | Rethinking phonons: The issue of disorder. Npj Computational Materials, 2017, 3, .                                                             | 8.7  | 66        |
| 16 | Thermal Transport in Disordered Materials. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 81-116.                              | 2.6  | 66        |
| 17 | A formalism for calculating the modal contributions to thermal interface conductance. New Journal of Physics, 2015, 17, 103002.                | 2.9  | 62        |
| 18 | Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power. Energy and<br>Environmental Science, 2016, 9, 2654-2665. | 30.8 | 60        |

ASEGUN HENRY

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Phonon transport at interfaces: Determining the correct modes of vibration. Journal of Applied Physics, 2016, 119, .                                                               | 2.5  | 59        |
| 20 | Phonon transport at interfaces between different phases of silicon and germanium. Journal of Applied Physics, 2017, 121, .                                                         | 2.5  | 55        |
| 21 | Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh<br>Thermal Boundary Conductance. Advanced Materials, 2018, 30, e1804097.           | 21.0 | 55        |
| 22 | Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the<br>Phonon Gas Model. Nano Letters, 2018, 18, 7469-7477.                                  | 9.1  | 53        |
| 23 | Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon<br>Dioxide. Scientific Reports, 2016, 6, 35720.                                     | 3.3  | 52        |
| 24 | Examining the Validity of the Phonon Gas Model in Amorphous Materials. Scientific Reports, 2016, 6,<br>37675.                                                                      | 3.3  | 48        |
| 25 | A deep neural network interatomic potential for studying thermal conductivity of <b> <i>β</i> </b> -Ga2O3. Applied Physics Letters, 2020, 117, .                                   | 3.3  | 43        |
| 26 | The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power. Energy and Environmental Science, 2014, 7, 1819-1828.               | 30.8 | 39        |
| 27 | Empirical interatomic potentials optimized for phonon properties. Npj Computational Materials, 2017, 3, .                                                                          | 8.7  | 36        |
| 28 | Phonon transport in amorphous carbon using Green <b>–</b> Kubo modal analysis. Applied Physics<br>Letters, 2016, 108, .                                                            | 3.3  | 28        |
| 29 | Examining the Effects of Stiffness and Mass Difference on the Thermal Interface Conductance<br>Between Lennard-Jones Solids. Scientific Reports, 2016, 5, 18361.                   | 3.3  | 24        |
| 30 | A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation. Solar Energy, 2015, 122, 547-561.                         | 6.1  | 23        |
| 31 | Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics. Journal of Applied Physics, 2019, 125, . | 2.5  | 21        |
| 32 | Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity.<br>Journal of Applied Physics, 2015, 117, .                                       | 2.5  | 19        |
| 33 | Effect of light atoms on thermal transport across solid–solid interfaces. Physical Chemistry<br>Chemical Physics, 2019, 21, 17029-17035.                                           | 2.8  | 17        |
| 34 | Estimating the cost of high temperature liquid metal based concentrated solar power. Journal of<br>Renewable and Sustainable Energy, 2018, 10, .                                   | 2.0  | 16        |
| 35 | Enhancement of ion diffusion by targeted phonon excitation. Cell Reports Physical Science, 2021, 2, 100431.                                                                        | 5.6  | 15        |
| 36 | Explicit Treatment of Hydrogen Atoms in Thermal Simulations of Polyethylene. Nanoscale and<br>Microscale Thermophysical Engineering, 2009, 13, 99-108.                             | 2.6  | 13        |

ASEGUN HENRY

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Understanding Divergent Thermal Conductivity in Single Polythiophene Chains Using Green–Kubo<br>Modal Analysis and Sonification. Journal of Physical Chemistry A, 2017, 121, 5586-5596. | 2.5  | 13        |
| 38 | Interface conductance modal analysis of lattice matched InGaAs/InP. Applied Physics Letters, 2016, 108, .                                                                               | 3.3  | 12        |
| 39 | Interface conductance modal analysis of a crystalline Si-amorphous SiO2 interface. Journal of Applied Physics, 2019, 125, .                                                             | 2.5  | 11        |
| 40 | Inverted metamorphic AlGaInAs/GaInAs tandem thermophotovoltaic cell designed for thermal energy grid storage application. Journal of Applied Physics, 2020, 128, .                      | 2.5  | 10        |
| 41 | Fast & accurate interatomic potentials for describing thermal vibrations. Computational Materials Science, 2020, 184, 109884.                                                           | 3.0  | 7         |
| 42 | Machine learned interatomic potentials for modeling interfacial heat transport in Ge/GaAs.<br>Computational Materials Science, 2021, 200, 110836.                                       | 3.0  | 7         |
| 43 | The Importance of Phonons with Negative Phase Quotient in Disordered Solids. Scientific Reports, 2018, 8, 2627.                                                                         | 3.3  | 6         |
| 44 | Thermal energy grid storage: Liquid containment and pumping above 2000°C. Applied Energy, 2022, 308,<br>118081.                                                                         | 10.1 | 6         |
| 45 | Phonon optimized interatomic potential for aluminum. AIP Advances, 2017, 7, 125022.                                                                                                     | 1.3  | 4         |
| 46 | High-temperature Pumping of Silicon for Thermal Energy Grid Storage. Energy, 2021, 233, 121105.                                                                                         | 8.8  | 3         |
| 47 | Validation of the Porous Medium Approximation for Hydrodynamics Analysis in Compact Heat<br>Exchangers. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .           | 1.5  | 3         |
| 48 | A Computational Framework for Modelling and Simulating Vibrational Mode Dynamics. Modelling and Simulation in Materials Science and Engineering, 0, , .                                 | 2.0  | 3         |
| 49 | Ultrahigh temperature sensible heat storage and heat transfer fluids. , 2021, , 57-84.                                                                                                  |      | 2         |
| 50 | Thermoelectric Energy Conversion in Nanostructures. , 2006, , .                                                                                                                         |      | 1         |
| 51 | Calculation of Modal Contributions to Heat Transfer across Si/Ge Interfaces. Materials Research<br>Society Symposia Proceedings, 2015, 1779, 21-26.                                     | 0.1  | 1         |