Alfonso Garcia GarcÃ-a-Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. Journal of Colloid and Interface Science, 2022, 612, 467-478.	5.0	6
2	Enhanced Antioxidant Effects of the Anti-Inflammatory Compound Probucol When Released from Mesoporous Silica Particles. Pharmaceutics, 2022, 14, 502.	2.0	5
3	Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and <i>In Vivo</i> Oral Absorption. Molecular Pharmaceutics, 2022, 19, 1091-1103.	2.3	2
4	Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: A systematic review. Sleep Medicine Reviews, 2021, 57, 101431.	3.8	17
5	Effects of Absorption Kinetics on the Catabolism of Melatonin Released from CAP-Coated Mesoporous Silica Drug Delivery Vehicles. Pharmaceutics, 2021, 13, 1436.	2.0	2
6	Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. Nanomaterials, 2021, 11, 2565.	1.9	13
7	Equilibrium and Kinetic Study of I- and d-Valine Adsorption in Supramolecular-Templated Chiral Mesoporous Materials. Molecules, 2021, 26, 338.	1.7	5
8	Chick Embryo Experimental Platform for Micrometastases Research in a 3D Tissue Engineering Model: Cancer Biology, Drug Development, and Nanotechnology Applications. Biomedicines, 2021, 9, 1578.	1.4	2
9	Influence of a Protein Corona on the Oral Pharmacokinetics of Testosterone Released from Mesoporous Silica. Advanced Therapeutics, 2020, 3, 1900110.	1.6	7
10	Pore structure and particle shape modulates the protein corona of mesoporous silica particles. Materials Advances, 2020, 1, 599-603.	2.6	5
11	A lysozyme corona complex for the controlled pharmacokinetic release of probucol from mesoporous silica particles. Biomaterials Science, 2020, 8, 3800-3803.	2.6	4
12	Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. Langmuir, 2020, 36, 3367-3376.	1.6	7
13	Mesoporous Matrices as Hosts for Metal Halide Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 1901868.	3.6	30
14	Effect of a protein corona on the fibrinogen induced cellular oxidative stress of gold nanoparticles. Nanoscale, 2020, 12, 5898-5905.	2.8	17
15	A unique insight into the defect structures of bicontinuous mesophases in liquid crystals and hybrid materials. IUCrJ, 2020, 7, 146-147.	1.0	Ο
16	Chiral Resolution using Supramolecularâ€Templated Mesostructured Materials. Angewandte Chemie, 2019, 131, 10975-10978.	1.6	3
17	Antioxidant properties of probucol released from mesoporous silica. European Journal of Pharmaceutical Sciences, 2019, 138, 105038.	1.9	8
18	Chiral Resolution using Supramolecularâ€Templated Mesostructured Materials. Angewandte Chemie - International Edition, 2019, 58, 10859-10862.	7.2	19

#	Article	IF	CITATIONS
19	Influence of surface chemistry on the formation of a protein corona on nanodiamonds. Journal of Materials Chemistry B, 2019, 7, 3383-3389.	2.9	15
20	Simultaneous Functionalization of Carbon Surfaces with Rhodium and Iridium Organometallic Complexes: Hybrid Bimetallic Catalysts for Hydroamination. Organometallics, 2019, 38, 780-787.	1.1	17
21	Probing the Amorphous State of Pharmaceutical Compounds Within Mesoporous Material Using Pair Distribution Function Analysis. Journal of Pharmaceutical Sciences, 2018, 107, 2216-2224.	1.6	12
22	Influence of surface composition on the colloidal stability of ultra-small detonation nanodiamonds in biological media. Diamond and Related Materials, 2018, 83, 38-45.	1.8	15
23	Dispersed Uniform Nanoparticles from a Macroscopic Organosilica Powder. Langmuir, 2018, 34, 2274-2281.	1.6	2
24	Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials, 2017, 121, 28-40.	5.7	58
25	Application of mesoporous silica materials for the immobilization of polyphenol oxidase. Food Chemistry, 2017, 217, 360-363.	4.2	26
26	Non-absorbable mesoporous silica for the development of protein sequestration therapies. Biochemical and Biophysical Research Communications, 2015, 468, 428-434.	1.0	7
27	Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities. Nanomaterials, 2014, 4, 813-826.	1.9	21
28	In vitrogeneration of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles. Nanomedicine, 2014, 9, 2457-2466.	1.7	12
29	Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica. Angewandte Chemie - International Edition, 2014, 53, 12106-12110.	7.2	16
30	Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine, 2014, 9, 1353-1362.	1.7	27
31	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	0.6	14
32	Mesoporous silica particles potentiate antigen-specific T-cell responses. Nanomedicine, 2014, 9, 1835-1846.	1.7	28
33	Influence of microporosity in SBA-15 on the release properties of anticancer drug dasatinib. Journal of Materials Chemistry B, 2014, 2, 5265.	2.9	34
34	Toxicology of Mesoporous Silica Particles and Their Uses in Nanomedicine. Frontiers in Nanobiomedical Research, 2014, , 75-96.	0.1	0
35	Mesoporous ASD: Fundamentals. Advances in Delivery Science and Technology, 2014, , 637-663.	0.4	0
36	Self-Assembly Mechanism of Folate-Templated Mesoporous Silica. Langmuir, 2013, 29, 12003-12012.	1.6	27

#	Article	IF	CITATIONS
37	<i>In vivo</i> oral toxicological evaluation of mesoporous silica particles. Nanomedicine, 2013, 8, 57-64.	1.7	24
38	Delivery of Differentiation Factors by Mesoporous Silica Particles Assists Advanced Differentiation of Transplanted Murine Embryonic Stem Cells. Stem Cells Translational Medicine, 2013, 2, 906-915.	1.6	27
39	The role of curvature in silica mesoporous crystals. Interface Focus, 2012, 2, 634-644.	1.5	10
40	Morphological properties of nanoporous folic acid materials and <i>in vitro</i> assessment of their biocompatibility. Nanomedicine, 2012, 7, 327-334.	1.7	4
41	Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles. ACS Nano, 2012, 6, 1925-1938.	7.3	100
42	Adjuvant Properties of Mesoporous Silica Particles Tune the Development of Effector T Cells. Small, 2012, 8, 2116-2124.	5.2	62
43	In vivo Enhancement in Bioavailability of Atazanavir in the Presence of Protonâ€Pump Inhibitors using Mesoporous Materials. ChemMedChem, 2012, 7, 43-48.	1.6	38
44	Mechanisms and Kinetics for Sorption of CO ₂ on Bicontinuous Mesoporous Silica Modified with <i>n</i> -Propylamine. Langmuir, 2011, 27, 11118-11128.	1.6	260
45	Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine, 2011, 6, 867-877.	1.7	89
46	In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy. Biochemical Pharmacology, 2011, 81, 976-984.	2.0	108
47	Aluminophosphates for CO ₂ Separation. ChemSusChem, 2011, 4, 91-97.	3.6	70
48	The Synthesis of Chiral Periodic Organosilica Materials with Ultrasmall Mesopores. Angewandte Chemie - International Edition, 2011, 50, 8095-8099.	7.2	18
49	Bicontinuous Cubic Mesoporous Materials with Biphasic Structures. Chemistry - A European Journal, 2011, 17, 13510-13516.	1.7	8
50	Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 2010, 62, 362-374.	6.6	624
51	Structural variations in mesoporous materials with cubic Pmn symmetry. Microporous and Mesoporous Materials, 2010, 133, 27-35.	2.2	7
52	Release of Folic Acid in Mesoporous NFM-1 Silica. Journal of Nanoscience and Nanotechnology, 2010, 10, 7398-7401.	0.9	8
53	Temperature-Induced Uptake of CO ₂ and Formation of Carbamates in Mesocaged Silica Modified with <i>n</i> -Propylamines. Langmuir, 2010, 26, 10013-10024.	1.6	155
54	Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicology and Applied Pharmacology, 2009, 239, 306-319.	1.3	81

#	Article	IF	CITATIONS
55	Mesoporous silicaâ€based nanomaterials for drug delivery: evaluation of structural properties associated with release rate. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 140-148.	3.3	45
56	Co-Structure Directing Agent Induced Phase Transformation of Mesoporous Materials. Langmuir, 2009, 25, 3189-3195.	1.6	30
57	Proton Absorption in As-Synthesized Mesoporous Silica Nanoparticles as a Structure-Function Relationship Probing Mechanism. Langmuir, 2009, 25, 4306-4310.	1.6	7
58	Nonsurfactant Supramolecular Synthesis of Ordered Mesoporous Silica. Journal of the American Chemical Society, 2009, 131, 3189-3191.	6.6	59
59	A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose. Journal of Physical Chemistry B, 2008, 112, 12249-12255.	1.2	120
60	Hydrothermal Phase Transformation of Bicontinuous Cubic Mesoporous Material AMS-6. Chemistry of Materials, 2008, 20, 3857-3866.	3.2	37
61	Sustained Release from Mesoporous Nanoparticles: Evaluation of Structural Properties Associated with Release Rate. Current Drug Delivery, 2008, 5, 177-185.	0.8	27
62	A Mechanistic Study of the Formation of Mesoporous Structures from in Situ AC Conductivity Measurements. Langmuir, 2007, 23, 9875-9881.	1.6	12
63	On the use of polymeric dispersant P123 in the synthesis of bicontinuous cubic mesoporous AMS-6. Journal of Materials Chemistry, 2007, 17, 3622.	6.7	7
64	Mesoporous Silica Particles Induce Size Dependent Effects on Human Dendritic Cells. Nano Letters, 2007, 7, 3576-3582.	4.5	255
65	Particle-Size Control and Surface Structure of the Cubic Mesocaged Material AMS-8. Angewandte Chemie - International Edition, 2006, 45, 2434-2438.	7.2	46
66	Structure and morphology of propylthiol-functionalised mesoporous silicas templated by non-ionic triblock copolymers. Microporous and Mesoporous Materials, 2005, 79, 241-252.	2.2	56
67	Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie - International Edition, 2005, 44, 5317-5322.	7.2	98
68	Studies of anionic surfactant templated mesoporous structures by electron microscopy. Studies in Surface Science and Catalysis, 2005, , 11-18.	1.5	7
69	Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. Journal of the American Chemical Society, 2005, 127, 6780-6787.	6.6	79
70	Growth of Mesoporous Materials within Colloidal Crystal Films by Spin-Coating. Journal of Physical Chemistry B, 2005, 109, 19643-19649.	1.2	44
71	Structural Investigations of AMS-n Mesoporous Materials by Transmission Electron Microscopy. Chemistry of Materials, 2004, 16, 813-821.	3.2	115
72	Structural Solution of Mesocaged Material AMS-8. Chemistry of Materials, 2004, 16, 3597-3605.	3.2	101

#	Article	IF	CITATIONS
73	Structural study of meso-porous materials by electron microscopy. Studies in Surface Science and Catalysis, 2004, 148, 261-288.	1.5	24
74	Synthesis of Large-Porelad Mesoporous Silica and Its Tubelike Carbon Replica. Angewandte Chemie - International Edition, 2003, 42, 3930-3934.	7.2	116
75	A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials, 2003, 2, 801-805.	13.3	540
76	Electron microscopic investigation of mesoporous SBA-2. Studies in Surface Science and Catalysis, 2002, 141, 379-386.	1.5	1
77	Particle morphology and microstructure in the mesoporous silicate SBA-2. Journal of Materials Chemistry, 2002, 12, 20-23.	6.7	27
78	Control of structure, pore size and morphology of three-dimensionally ordered mesoporous silicas prepared using the dicationic surfactant [CH3(CH2)15N(CH3)2(CH2)3N(CH3)3]Br2. Journal of Materials Chemistry, 2002, 12, 3533-3540.	6.7	48