José Marcato Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 97-106.	4.9	132
2	A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 2020, 178, 105791.	3.7	122
3	A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102456.	1.4	115
4	Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors, 2019, 19, 3595.	2.1	110
5	Landslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning With Constrains. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5047-5060.	2.3	85
6	Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imagery. Remote Sensing, 2019, 11, 2925.	1.8	80
7	A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements. Remote Sensing, 2020, 12, 906.	1.8	75
8	Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors, 2020, 20, 563.	2.1	70
9	Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques. Remote Sensing, 2020, 12, 3237.	1.8	68
10	Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 241-254.	4.9	68
11	A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174, 1-17.	4.9	61
12	A Novel Deep Learning Method to Identify Single Tree Species in UAV-Based Hyperspectral Images. Remote Sensing, 2020, 12, 1294.	1.8	60
13	Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery. Sensors, 2020, 20, 4802.	2.1	49
14	Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. Precision Agriculture, 2021, 22, 1171-1188.	3.1	36
15	ATSS Deep Learning-Based Approach to Detect Apple Fruits. Remote Sensing, 2021, 13, 54.	1.8	36
16	Generating Virtual Images from Oblique Frames. Remote Sensing, 2013, 5, 1875-1893.	1.8	35
17	Capsule-Based Networks for Road Marking Extraction and Classification From Mobile LiDAR Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1981-1995.	4.7	34
18	Using Deep Learning for Automatic Water Stage Measurements. Water Resources Research, 2021, 57, e2020WR027608.	1.7	34

JOSé MARCATO JUNIOR

#	Article	IF	CITATIONS
19	Modeling Hyperspectral Response of Water-Stress Induced Lettuce Plants Using Artificial Neural Networks. Remote Sensing, 2019, 11, 2797.	1.8	30
20	Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry. Remote Sensing, 2019, 11, 2447.	1.8	30
21	Exterior orientation of CBERS-2B imagery using multi-feature control and orbital data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79, 219-225.	4.9	29
22	Semantic Segmentation of Tree-Canopy in Urban Environment with Pixel-Wise Deep Learning. Remote Sensing, 2021, 13, 3054.	1.8	28
23	Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101907.	1.4	24
24	Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images. Remote Sensing, 2021, 13, 5084.	1.8	24
25	Storm-Drain and Manhole Detection Using the RetinaNet Method. Sensors, 2020, 20, 4450.	2.1	22
26	Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sensing, 2021, 13, 4632.	1.8	22
27	Accurate Prediction of Earthquake-Induced Landslides Based on Deep Learning Considering Landslide Source Area. Remote Sensing, 2021, 13, 3436.	1.8	21
28	A Machine Learning Approach for Mapping Forest Vegetation in Riparian Zones in an Atlantic Biome Environment Using Sentinel-2 Imagery. Remote Sensing, 2020, 12, 4086.	1.8	19
29	Robust Lane Extraction From MLS Point Clouds Towards HD Maps Especially in Curve Road. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1505-1518.	4.7	19
30	Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images. Remote Sensing, 2021, 13, 2482.	1.8	18
31	Geometric model and assessment of a dualâ€fisheye imaging system. Photogrammetric Record, 2018, 33, 243-263.	0.4	16
32	GCN-Based Pavement Crack Detection Using Mobile LiDAR Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11052-11061.	4.7	16
33	GIS-based spatial prediction of landslide using road factors and random forest for Sichuan-Tibet Highway. Journal of Mountain Science, 2022, 19, 461-476.	0.8	16
34	Calibration of a catadioptric omnidirectional vision system with conic mirror. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113, 97-105.	4.9	15
35	Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors, 2021, 21, 3971.	2.1	15
36	BoundaryNet: Extraction and Completion of Road Boundaries With Deep Learning Using Mobile Laser Scanning Point Clouds and Satellite Imagery. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5638-5654.	4.7	15

José Marcato Junior

#	Article	IF	CITATIONS
37	Mapping Utility Poles in Aerial Orthoimages Using ATSS Deep Learning Method. Sensors, 2020, 20, 6070.	2.1	14
38	EXPERIMENTAL ASSESSMENT OF TECHNIQUES FOR FISHEYE CAMERA CALIBRATION. Boletim De Ciencias Geodesicas, 2015, 21, 637-651.	0.2	13
39	3D Vehicle Detection Using Multi-Level Fusion From Point Clouds and Images. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15146-15154.	4.7	13
40	Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil. Regional Environmental Change, 2020, 20, 1.	1.4	12
41	Rapid Extraction of Urban Road Guardrails From Mobile LiDAR Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1572-1577.	4.7	11
42	Active Fire Mapping on Brazilian Pantanal Based on Deep Learning and CBERS 04A Imagery. Remote Sensing, 2022, 14, 688.	1.8	11
43	Deep learning applied in fish reproduction for counting larvae in images captured by smartphone. Aquacultural Engineering, 2022, 97, 102225.	1.4	11
44	Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning. Forests, 2021, 12, 582.	0.9	9
45	Deep Learning Approaches to Spatial Downscaling of GRACE Terrestrial Water Storage Products Using EALCO Model Over Canada. Canadian Journal of Remote Sensing, 2021, 47, 657-675.	1.1	9
46	Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements. Precision Agriculture, 2022, 23, 470-491.	3.1	8
47	Airborne multispectral LiDAR point cloud classification with a feature Reasoning-based graph convolution network. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102634.	1.4	8
48	Silage Grass Sward Nitrogen Concentration and Dry Matter Yield Estimation Using Deep Regression and RGB Images Captured by UAV. Agronomy, 2022, 12, 1352.	1.3	8
49	Characterization of MSS Channel Reflectance and Derived Spectral Indices for Building Consistent Landsat 1–5 Data Record. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8967-8984.	2.7	7
50	Image Segmentation and Classification with SLIC Superpixel and Convolutional Neural Network in Forest Context. , 2019, , .		5
51	Building Instance Extraction Method Based on Improved Hybrid Task Cascade. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	5
52	Evaluating Different Deep Learning Models for Automatic Water Segmentation. , 2021, , .		5
53	Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102608.	1.4	5
54	Counting and locating high-density objects using convolutional neural network. Expert Systems With Applications, 2022, 195, 116555.	4.4	5

#	Article	IF	CITATIONS
55	A Supervoxel Approach to Road Boundary Enhancement From 3-D LiDAR Point Clouds. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	4
56	Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network. Scientific Reports, 2021, 11, 19619.	1.6	4
57	Road marking extraction in UAV imagery using attentive capsule feature pyramid network. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102677.	1.4	4
58	A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery. Remote Sensing, 2021, 13, 2927.	1.8	3
59	Retinanet Deep Learning-Based Approach to Detect Termite Mounds in Eucalyptus Forests. , 2021, , .		3
60	Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102690.	1.4	3
61	Single Satellite Imagery Superresolution Based on Hybrid Nonlocal Similarity Constrained Convolution Sparse Coding. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7489-7505.	2.3	1
62	Assessment of CNN-Based Methods for Single Tree Detection on High-Resolution RGB Images in Urban Areas. , 2021, , .		1
63	Mapeamento da Vegetação Nativa do Cerrado na Região de Três Lagoas-MS com o Google Earth Engine. Revista Brasileira De Cartografia, 2019, 71, 702-725.	0.1	1
64	IEEE GRSS Mato Grosso do Sul (Brazil) Student Chapter: Status and Activities 2019 [Chapters]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 152-158.	4.9	1
65	IEEE GRSS Brazil Chapter: Status and Activities in 2019 [Chapters]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 144-151.	4.9	1
66	Identifying Building Rooftops in Hyperspectral Imagery Using CNN With Pure Pixel Index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 12022-12034.	2.3	1
67	Line-based deep learning method for tree branch detection from digital images. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102759.	0.9	1
68	Deep Learning Regression Approaches Applied to Estimate Tillering in Tropical Forages Using Mobile Phone Images. Sensors, 2022, 22, 4116.	2.1	1
69	Aerial Image Segmentation In Urban Environment For Vegetation Monitoring. , 2020, , .		0
70	Orientação Exterior de Imagens CBERS-4/PAN Utilizando Modelos Rigorosos. Revista Brasileira De Cartografia, 2021, 73, 329-339.	0.1	0
71	Integration of Photogrammetry and Deep Learning in Earth Observation Applications. , 2021, , .		0
79	Quiso de SIG no maneamento de OrientaÃSÃfo, Revista Brasileira De GeomÃ:tica, 2018, 6, 62	0.0	0

#	Article	IF	CITATIONS
73	Calibração da Plataforma de um Sistema de Visão Omnidirecional composto por uma Câmara e um Espelho Cônico. Revista Brasileira De Cartografia, 2020, 72, 270-279.	0.1	0
74	Acurácia de Produtos Fotogramétricos Gerados com Aeronave Remotamente Pilotada em Relevo Acidentado. Revista Brasileira De Cartografia, 2020, 72, 490-500.	0.1	0
75	APLICAĂ‡ĂƒO DE APRENDIZADO DE MÃQUINA COM DADOS DE SENSORIAMENTO REMOTO PARA O MAPEAMENTO DE FLORESTAS URBANAS. Revista UnG Geociências, 2021, 20, 16.	0.0	0
76	The IEEE GRSS Brazil Chapter: 2020 Activities [Chapters]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 354-360.	4.9	0
77	Three-dimensional spatial modelling of traffic-induced urban air pollution using the Graz Lagrangian model and GIS. Geomatica, 0, , 1-16.	0.5	0