Yilan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748257/publications.pdf Version: 2024-02-01

		430754	642610
24	1,462	18	23
papers	citations	h-index	g-index
25	25	25	2241
all docs	docs citations	times ranked	citing authors

ΥΠΑΝ ΜΠ

#	Article	IF	CITATIONS
1	Hollow Rutile Cuboid Arrays Grown on Carbon Fiber Cloth as a Flexible Electrode for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2002629.	7.8	60
2	Tungsten nitride nanoparticles anchored on porous borocarbonitride as high-rate anode for lithium ion batteries. Chemical Engineering Journal, 2020, 399, 125705.	6.6	38
3	A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Storage Materials, 2020, 30, 401-411.	9.5	59
4	Sodium-Ion Storage Mechanism in Triquinoxalinylene and a Strategy for Improving Electrode Stability. Energy & Fuels, 2020, 34, 5099-5105.	2.5	12
5	Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage. Nano-Micro Letters, 2020, 12, 48.	14.4	25
6	Design, synthesis and lithium-ion storage capability of Al _{0.5} Nb _{24.5} O ₆₂ . Journal of Materials Chemistry A, 2019, 7, 19862-19871.	5.2	96
7	Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. Journal of Materials Chemistry A, 2019, 7, 20813-20823.	5.2	18
8	Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 22579-22587.	5.2	25
9	MoNb ₁₂ O ₃₃ as a new anode material for high-capacity, safe, rapid and durable Li ⁺ storage: structural characteristics, electrochemical properties and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 6522-6532.	5.2	157
10	Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 25537-25547.	5.2	63
11	New Anode Material for Lithium-Ion Batteries: Aluminum Niobate (AlNb ₁₁ O ₂₉). ACS Applied Materials & Interfaces, 2019, 11, 6089-6096.	4.0	93
12	A reduced graphene oxide–NiO composite electrode with a high and stable capacitance. Sustainable Energy and Fuels, 2018, 2, 673-678.	2.5	18
13	Zeolite-templated nanoporous carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10388-10394.	5.2	66
14	Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. Journal of Power Sources, 2018, 408, 82-90.	4.0	41
15	Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping. ACS Omega, 2018, 3, 15009-15017.	1.6	46
16	Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy and Fuels, 2017, 1, 1265-1281.	2.5	287
17	Honeycomb-Ordered Na ₃ Ni _{1.5} M _{0.5} BiO ₆ (M = Ni, Cu,) Tj ET 2715-2722.	Qq1 1 0.7 8.8	84314 rgB 70
18	Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. Journal of Materials Chemistry A, 2017, 5, 22186-22192.	5.2	85

Yilan Wu

#	Article	IF	CITATIONS
19	Electrocapacitive properties of nitrogen-containing porous carbon derived from cellulose. Journal of Power Sources, 2017, 360, 634-641.	4.0	29
20	One-pot synthesis of ordered mesoporous NiMo-Al 2 O 3 catalysts for dibenzothiophene hydrodesulfurization. Applied Catalysis B: Environmental, 2016, 198, 493-507.	10.8	85
21	Preparation of silicalite-1@Pt/alumina core–shell catalyst for shape-selective hydrogenation of xylene isomers. Catalysis Communications, 2015, 64, 110-113.	1.6	11
22	Synergetic effect of H-ZSM-5/Silicalite-1@Pt/Al2O3 core–shell catalyst to enhance the selective hydrogenation of p-xylene. Journal of Membrane Science, 2015, 496, 70-77.	4.1	10
23	The catalytic performance of Ni2P/Al2O3 catalyst in comparison with Ni/Al2O3 catalyst in dehydrogenation of cyclohexane. Applied Catalysis A: General, 2014, 469, 434-441.	2.2	66
24	Charge Storage Behavior of Carbon Nanoparticles toward Alkali Metal Ions at Fast-Charging Rates. ACS Applied Energy Materials, 0, , .	2.5	2