Arpad Mike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748045/publications.pdf

Version: 2024-02-01

393982 344852 1,320 39 19 36 citations g-index h-index papers 45 45 45 1617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonâ€synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology, 2010, 160, 785-809.	2.7	151
2	Choline and acetylcholine have similar kinetic properties of activation and desensitization on the $\hat{l}\pm7$ nicotinic receptors in rat hippocampal neurons. Brain Research, 2000, 882, 155-168.	1.1	118
3	Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Research, 2017, 25, 139-151.	0.3	95
4	Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behavioural Brain Research, 2000, 113, 131-141.	1.2	87
5	2,3-Benzodiazepines (GYKI 52466 and Analogs): Negative Allosteric Modulators of AMPA Receptors. CNS Neuroscience & Therapeutics, 1996, 2, 91-126.	4.0	85
6	Direct Inhibitory Effect of Fluoxetine on N-Methyl-D-Aspartate Receptors in the Central Nervous System. Biological Psychiatry, 2007, 62, 1303-1309.	0.7	79
7	The Mechanism of Activity-Dependent Sodium Channel Inhibition by the Antidepressants Fluoxetine and Desipramine. Molecular Pharmacology, 2006, 70, 2052-2063.	1.0	64
8	Neurochemical Evidence of Heterogeneity of Presynaptic and Somatodendritic Nicotinic Acetylcholine Receptorsa. Annals of the New York Academy of Sciences, 1995, 757, 84-99.	1.8	62
9	GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochemistry International, 2012, 60, 170-176.	1.9	59
10	Subtype-specificity of the presynaptic $\hat{l}\pm 2$ -adrenoceptors modulating hippocampal norepinephrine release in rat. Brain Research, 1995, 674, 238-244.	1.1	49
11	Classification of Drugs Based on Properties of Sodium Channel Inhibition: A Comparative Automated Patch-Clamp Study. PLoS ONE, 2010, 5, e15568.	1.1	47
12	Fast- or Slow-inactivated State Preference of Na+ Channel Inhibitors: A Simulation and Experimental Study. PLoS Computational Biology, 2010, 6, e1000818.	1.5	44
13	The Enigmatic Drug Binding Site for Sodium Channel Inhibitors. Current Molecular Pharmacology, 2010, 3, 129-144.	0.7	38
14	Nonsynaptic Receptors for GABA and Glutamate. Current Topics in Medicinal Chemistry, 2006, 6, 941-948.	1.0	32
15	First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5â€HT ₃ and D ₃ receptors. British Journal of Pharmacology, 2012, 167, 1480-1491.	2.7	32
16	Binding of sodium channel inhibitors to hyperpolarized and depolarized conformations of the channel. Neuropharmacology, 2011, 60, 191-200.	2.0	27
17	Ca2+-sensitive inhibition by Pb2+ of α7-containing nicotinic acetylcholine receptors in hippocampal neurons. Brain Research, 2000, 873, 112-123.	1.1	24
18	Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer βâ€sheet. Journal of Physiology, 2010, 588, 4415-4429.	1.3	22

#	Article	IF	CITATIONS
19	Pb2+ via Protein Kinase C Inhibits Nicotinic Cholinergic Modulation of Synaptic Transmission in the Hippocampus. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 700-710.	1.3	21
20	Mode of action of the positive modulator PNU-120596 on $\hat{l}\pm7$ nicotinic acetylcholine receptors. Neuropharmacology, 2014, 81, 42-54.	2.0	21
21	Kinetic properties and open probability of $\hat{l}\pm7$ nicotinic acetylcholine receptors. Neuropharmacology, 2014, 81, 101-115.	2.0	21
22	The Unusual State-Dependent Affinity of P2X3 Receptors Can Be Explained by an Allosteric Two-Open-State Model. Molecular Pharmacology, 2008, 73, 224-234.	1.0	18
23	Differential changes in presynaptic modulation of transmitter release during aging. International Journal of Developmental Neuroscience, 1994, 12, 107-115.	0.7	17
24	Non-blocking modulation contributes to sodium channel inhibition by a covalently attached photoreactive riluzole analog. Scientific Reports, 2018, 8, 8110.	1.6	16
25	Different pH-sensitivity patterns of 30 sodium channel inhibitors suggest chemically different pools along the access pathway. Frontiers in Pharmacology, 2015, 6, 210.	1.6	15
26	Converging Effects of Ginkgo biloba Extract at the Level of Transmitter Release, NMDA and Sodium Currents and Dendritic Spikes. Planta Medica, 2008, 74, 1235-1239.	0.7	12
27	Differential effect of nicotinic agonists on the [3H]norepinephrine release from rat hippocampal slices. Neurochemical Research, 2001, 26, 943-950.	1.6	11
28	Evidence that GYKI 52466, a novel non-NMDA antagonist enhances the decay of kainate-induced current in cultured chicken cortical neurons. Developmental Brain Research, 1994, 77, 257-263.	2.1	8
29	Inhibitory effect of the DA uptake blocker GBR 12909 on sodium channels of hippocampal neurons. NeuroReport, 2003, 14, 1945-1949.	0.6	8
30	A novel modulatory mechanism of sodium currents: frequency-dependence without state-dependent binding. Neuroscience, 2004, 125, 1019-1028.	1.1	7
31	The mechanism of nonâ€blocking inhibition of sodium channels revealed by conformationâ€selective photolabeling. British Journal of Pharmacology, 2021, 178, 1200-1217.	2.7	6
32	Non-NMDA receptor-mediated modulation of voltage-activated outward currents in chick neurones. NeuroReport, 1996, 7, 2613-2618.	0.6	4
33	The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca2+]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Research Bulletin, 2014, 104, 42-51.	1.4	3
34	Type I-like behavior of the type II $\hat{l}\pm7$ nicotinic acetylcholine receptor positive allosteric modulator A-867744. PeerJ, 2019, 7, e7542.	0.9	3
35	The Bradycardic Agent Ivabradine Acts as an Atypical Inhibitor of Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2022, 13, 809802.	1.6	3
36	Possible mechanisms of the effect of physostigmine on the facilitation of acetylcholine release in the guinea pig myenteric plexus. Brain Research Bulletin, 1994, 34, 441-445.	1.4	2

ARPAD MIKE

#	Article	IF	CITATIONS
37	Characterization of Compound-Specific, Concentration-Independent Biophysical Properties of Sodium Channel Inhibitor Mechanism of Action Using Automated Patch-Clamp Electrophysiology. Frontiers in Pharmacology, 2021, 12, 738460.	1.6	2
38	How Fast is Riluzole. Biophysical Journal, 2020, 118, 576a.	0.2	1
39	An Advanced Automated Patch Clamp Protocol Design to Investigate Drug—lon Channel Binding Dynamics. Frontiers in Pharmacology, 2021, 12, 738260.	1.6	1