Xiangyu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747856/publications.pdf

Version: 2024-02-01

77	3,194	29 h-index	55
papers	citations		g-index
80	80	80	3070 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Bismuth chloride@mesocellular carbon foam nanocomposite cathode materials for rechargeable chloride ion batteries. Chinese Chemical Letters, 2022, 33, 2200-2204.	9.0	15
2	Intelligent upgrading of plant breeding: Decision support tools in the golden seed breeding cloud platform. Computers and Electronics in Agriculture, 2022, 194, 106672.	7.7	8
3	Halogen Storage Electrode Materials for Rechargeable Batteries. Energy and Environmental Materials, 2022, 5, 1155-1179.	12.8	19
4	Polyxylylviologen Chloride as an Organic Electrode Material for Efficient Reversible Chloride-Ion Storage. ACS Applied Energy Materials, 2022, 5, 6980-6985.	5.1	11
5	Phoenix Tree Leaves–Derived Biomass Carbons for Sodium-Ion Batteries. , 2021, , 135-146.		O
6	Carbon Nanotube Supported Li-Excess Cation-Disordered Li1.24Fe0.38Ti0.38O2 Cathode with Enhanced Lithium-lon Storage Performance. Journal of Electronic Materials, 2021, 50, 5029-5036.	2.2	4
7	Chloride ion storage performance of polyaniline/graphene nanocomposite in aqueous sodium chloride solution. Materials Research Bulletin, 2021, 138, 111209.	5. 2	7
8	A Pyrite Iron Disulfide Cathode with a Copper Current Collector for Highâ€Energy Reversible Magnesiumâ€Ion Storage. Advanced Materials, 2021, 33, e2103881.	21.0	50
9	Halogenidâ€basierte Materialien und Chemie fÃ⅓r wiederaufladbare Batterien. Angewandte Chemie, 2020, 132, 5954-6004.	2.0	14
10	Halideâ€Based Materials and Chemistry for Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 5902-5949.	13.8	142
11	Highâ€Energy Interlayerâ€Expanded Copper Sulfide Cathode Material in Non orrosive Electrolyte for Rechargeable Magnesium Batteries. Advanced Materials, 2020, 32, e1905524.	21.0	125
12	Resol and urea derived N-doped porous carbon for Na-ion storage. Materials Chemistry and Physics, 2020, 254, 123535.	4.0	9
13	A Highâ€Energy Aqueous Manganese–Metal Hydride Hybrid Battery. Advanced Materials, 2020, 32, e2001106.	21.0	22
14	Plant Breeding Evaluation Based on Coupled Feature Representation. IEEE Access, 2020, 8, 153641-153650.	4.2	1
15	Low-Temperature Synthesis of LiFePO ₄ Nanoplates/C Composite for Lithium Ion Batteries. Energy & Sumple Sumple Sump Sump Sump Sump Sump Sump Sump Sump	5.1	15
16	Nitrogen/chlorine-doped carbon nanodisk-encapsulated hematite nanoparticles for high-performance lithium-ion storage. Journal of Alloys and Compounds, 2020, 843, 156045.	5.5	7
17	Room-Temperature Stable Inorganic Halide Perovskite as Potential Solid Electrolyte for Chloride Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18634-18641.	8.0	35
18	Vanadium oxychloride as cathode for rechargeable aluminum batteries. Journal of Alloys and Compounds, 2019, 806, 1109-1115.	5 . 5	9

#	Article	IF	CITATIONS
19	Cation-Disordered Lithium-Excess Li–Fe–Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44144-44152.	8.0	22
20	Polypyrrole as a Novel Chlorideâ€Storage Electrode for Seawater Desalination. Energy Technology, 2019, 7, 1900835.	3.8	40
21	An Allâ€Solidâ€State Rechargeable Chloride Ion Battery. Advanced Science, 2019, 6, 1802130.	11.2	41
22	Polyanilineâ€Intercalated FeOCl Cathode Material for Chlorideâ€Ion Batteries. ChemElectroChem, 2019, 6, 1761-1767.	3.4	31
23	Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries. Journal of Alloys and Compounds, 2019, 788, 407-412.	5.5	37
24	Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 771, 140-146.	5.5	7
25	Typha-derived hard carbon for high-performance sodium ion storage. Journal of Alloys and Compounds, 2019, 784, 1290-1296.	5.5	28
26	Ti substituted Ni-free Zr65-xTixCu17.5Fe10Al7.5 bulk metallic glasses with significantly enhanced glass-forming ability and mechanical properties. Journal of Alloys and Compounds, 2019, 773, 713-718.	5.5	10
27	Chloride ion-doped polypyrrole nanocomposite as cathode material for rechargeable magnesium battery. Materials Research Bulletin, 2018, 101, 1-5.	5.2	24
28	Yolk–Shell NiS ₂ Nanoparticleâ€Embedded Carbon Fibers forÂFlexible Fiberâ€Shaped Sodium Battery. Advanced Energy Materials, 2018, 8, 1800054.	19.5	162
29	Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochimica Acta, 2018, 270, 30-36.	5.2	68
30	Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1840008.	1.2	11
31	Enhanced chloride ion corrosion resistance of Zr-based bulk metallic glasses with cobalt substitution. Journal of Non-Crystalline Solids, 2018, 496, 18-23.	3.1	23
32	Image enhancement for crop trait information acquisition system. Information Processing in Agriculture, 2018, 5, 433-442.	4.1	6
33	Developing Polymer Cathode Material for the Chloride Ion Battery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2535-2540.	8.0	90
34	Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries. ACS Energy Letters, 2017, 2, 2341-2348.	17.4	87
35	Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity. Journal of Non-Crystalline Solids, 2017, 473, 120-124.	3.1	17
36	Improved electrochemical properties of flower-like Co hierarchitectures as anode materials for alkaline secondary batteries. Functional Materials Letters, 2017, 10, 1750076.	1.2	4

#	Article	IF	CITATIONS
37	Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Materials Research Bulletin, 2017, 96, 485-490.	5.2	35
38	Plant Breeding Evaluation with Rank Entropy-based Decision Tree. IFAC-PapersOnLine, 2016, 49, 336-340.	0.9	2
39	Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. Scientific Reports, 2016, 6, 19564.	3.3	79
40	Spinel LiMn2â^'x Si x O4 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Science China Materials, 2016, 59, 558-566.	6.3	8
41	Improving Diversity of User-Based Two-Step Recommendation Algorithm with Popularity Normalization. Lecture Notes in Computer Science, 2016, , 15-26.	1.3	7
42	Nanostructured cation disordered Li ₂ FeTiO ₄ /graphene composite as high capacity cathode for lithium-ion batteries. Materials Technology, 2016, 31, 537-543.	3.0	22
43	Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries. Scientific Reports, 2016, 6, 19448.	3.3	43
44	Electrochemical properties of Co-S/x wt.% AB5 composite materials. Science China Technological Sciences, 2015, 58, 1355-1359.	4.0	3
45	Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials, 2015, 5, 2335-2347.	4.1	19
46	Improving Top- $\langle i \rangle$ N $\langle i \rangle$ Recommendation Performance Using Missing Data. Mathematical Problems in Engineering, 2015, 2015, 1-13.	1.1	8
47	Batteries: Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic Electrolytes (Adv. Energy Mater. 3/2015). Advanced Energy Materials, 2015, 5, .	19.5	2
48	The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 6366-6372.	2.2	10
49	Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic Electrolytes. Advanced Energy Materials, 2015, 5, 1401155.	19.5	308
50	Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2015, 618, 210-216.	5.5	10
51	A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. Journal of Intelligent Information Systems, 2015, 44, 335-353.	3.9	32
52	Vanadium Oxychloride/Magnesium Electrode Systems for Chloride Ion Batteries. ACS Applied Materials & Lorentz & Loren	8.0	64
53	A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web, 2014, 17, 271-284.	4.0	138
54	Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Advances, 2014, 4, 26924-26927.	3.6	55

#	Article	IF	CITATIONS
55	Magnesium Anode for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10997-11000.	8.0	69
56	Chloride ion battery: A new member in the rechargeable battery family. Journal of Power Sources, 2014, 245, 706-711.	7.8	148
57	Interest before liking: Two-step recommendation approaches. Knowledge-Based Systems, 2013, 48, 46-56.	7.1	35
58	Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Advances, 2013, 3, 16330.	3.6	164
59	Electrochemical redox mechanism of Co–B–H anode material and its optimization by a novel electrolyte additive. RSC Advances, 2013, 3, 1327-1331.	3.6	8
60	Metal Oxychlorides as Cathode Materials for Chloride Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 13621-13624.	13.8	145
61	Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems. Lecture Notes in Computer Science, 2013, , 426-433.	1.3	21
62	Co-based anode materials for alkaline rechargeable Ni/Co batteries: a review. Journal of Materials Chemistry, 2012, 22, 277-285.	6.7	48
63	Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 6200.	6.7	39
64	Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Advances, 2012, 2, 2149.	3.6	14
65	Structure and electrochemical hydrogen storage properties of A2B-type Ti–Zr–Ni alloys. International Journal of Hydrogen Energy, 2012, 37, 5050-5055.	7.1	30
66	Electrochemical energy storage of Co powders in alkaline electrolyte. Electrochimica Acta, 2010, 55, 1169-1174.	5.2	15
67	Electrochemical properties of Co(OH)2 powders as an anode in an alkaline battery. Journal of Materials Science, 2010, 45, 3752-3756.	3.7	13
68	Electrochemical properties of Ti–Ni–H powders prepared by milling titanium hydride and nickel. International Journal of Hydrogen Energy, 2010, 35, 3076-3079.	7.1	11
69	Synergistic effects in an AB5–Co material as an anode for a secondary alkaline battery. International Journal of Hydrogen Energy, 2010, 35, 4342-4346.	7.1	6
70	Structural evolution and electrochemical hydrogenation behavior of Ti2Ni alloy. Intermetallics, 2010, 18, 1086-1090.	3.9	13
71	Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy and Environmental Science, 2010, 3, 1316.	30.8	38
72	Effect of surface treatments on microstructure and electrochemical properties of La–Ni–Al hydrogen storage alloy. International Journal of Hydrogen Energy, 2009, 34, 1904-1909.	7.1	25

XIANGYU ZHAO

#	Article	IF	CITATION
73	Effect of particle size on the electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy, 2009, 34, 3389-3394.	7.1	20
74	Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. International Journal of Hydrogen Energy, 2009, 34, 4788-4796.	7.1	208
75	Effect of Mechanical Milling on the Structure and Electrochemical Properties of Ti2Ni Alloy in an Alkaline Battery. Energy & Samp; Fuels, 2009, 23, 4678-4682.	5.1	13
76	Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2MmNi3.8Co0.75Mn0.4Al0.2MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy, 2008, 33, 81-86.	7.1	44
77	Porous TiO2â^'x with oxygen deficiency as sulfur host for lithiumâ€"sulfur batteries. Functional Materials Letters, 0, , 2143004.	1.2	1