
Xiangyu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747856/publications.pdf Version: 2024-02-01

ΧιλΝΟΥΠ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic Electrolytes. Advanced Energy Materials, 2015, 5, 1401155.	10.2	308
2	Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. International Journal of Hydrogen Energy, 2009, 34, 4788-4796.	3.8	208
3	Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Advances, 2013, 3, 16330.	1.7	164
4	Yolk–Shell NiS ₂ Nanoparticleâ€Embedded Carbon Fibers forÂFlexible Fiberâ€Shaped Sodium Battery. Advanced Energy Materials, 2018, 8, 1800054.	10.2	162
5	Chloride ion battery: A new member in the rechargeable battery family. Journal of Power Sources, 2014, 245, 706-711.	4.0	148
6	Metal Oxychlorides as Cathode Materials for Chloride Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 13621-13624.	7.2	145
7	Halideâ€Based Materials and Chemistry for Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 5902-5949.	7.2	142
8	A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web, 2014, 17, 271-284.	2.7	138
9	Highâ€Energy Interlayerâ€Expanded Copper Sulfide Cathode Material in Nonâ€Corrosive Electrolyte for Rechargeable Magnesium Batteries. Advanced Materials, 2020, 32, e1905524.	11.1	125
10	Developing Polymer Cathode Material for the Chloride Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 2535-2540.	4.0	90
11	Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries. ACS Energy Letters, 2017, 2, 2341-2348.	8.8	87
12	Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. Scientific Reports, 2016, 6, 19564.	1.6	79
13	Magnesium Anode for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10997-11000.	4.0	69
14	Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochimica Acta, 2018, 270, 30-36.	2.6	68
15	Vanadium Oxychloride/Magnesium Electrode Systems for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 22430-22435.	4.0	64
16	Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Advances, 2014, 4, 26924-26927.	1.7	55
17	A Pyrite Iron Disulfide Cathode with a Copper Current Collector for Highâ€Energy Reversible Magnesiumâ€ion Storage. Advanced Materials, 2021, 33, e2103881.	11.1	50
18	Co-based anode materials for alkaline rechargeable Ni/Co batteries: a review. Journal of Materials Chemistry, 2012, 22, 277-285.	6.7	48

#	Article	IF	CITATIONS
19	Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy, 2008, 33, 81-86.	3.8	44
20	Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries. Scientific Reports, 2016, 6, 19448.	1.6	43
21	An Allâ€Solidâ€State Rechargeable Chloride Ion Battery. Advanced Science, 2019, 6, 1802130.	5.6	41
22	Polypyrrole as a Novel Chloride‣torage Electrode for Seawater Desalination. Energy Technology, 2019, 7, 1900835.	1.8	40
23	Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 6200.	6.7	39
24	Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy and Environmental Science, 2010, 3, 1316.	15.6	38
25	Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries. Journal of Alloys and Compounds, 2019, 788, 407-412.	2.8	37
26	Interest before liking: Two-step recommendation approaches. Knowledge-Based Systems, 2013, 48, 46-56.	4.0	35
27	Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Materials Research Bulletin, 2017, 96, 485-490.	2.7	35
28	Room-Temperature Stable Inorganic Halide Perovskite as Potential Solid Electrolyte for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18634-18641.	4.0	35
29	A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. Journal of Intelligent Information Systems, 2015, 44, 335-353.	2.8	32
30	Polyanilineâ€Intercalated FeOCl Cathode Material for Chlorideâ€Ion Batteries. ChemElectroChem, 2019, 6, 1761-1767.	1.7	31
31	Structure and electrochemical hydrogen storage properties of A2B-type Ti–Zr–Ni alloys. International Journal of Hydrogen Energy, 2012, 37, 5050-5055.	3.8	30
32	Typha-derived hard carbon for high-performance sodium ion storage. Journal of Alloys and Compounds, 2019, 784, 1290-1296.	2.8	28
33	Effect of surface treatments on microstructure and electrochemical properties of La–Ni–Al hydrogen storage alloy. International Journal of Hydrogen Energy, 2009, 34, 1904-1909.	3.8	25
34	Chloride ion-doped polypyrrole nanocomposite as cathode material for rechargeable magnesium battery. Materials Research Bulletin, 2018, 101, 1-5.	2.7	24
35	Enhanced chloride ion corrosion resistance of Zr-based bulk metallic glasses with cobalt substitution. Journal of Non-Crystalline Solids, 2018, 496, 18-23.	1.5	23
36	Nanostructured cation disordered Li ₂ FeTiO ₄ /graphene composite as high capacity cathode for lithium-ion batteries. Materials Technology, 2016, 31, 537-543.	1.5	22

#	Article	IF	CITATIONS
37	Cation-Disordered Lithium-Excess Li–Fe–Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 44144-44152.	4.0	22
38	A Highâ€Energy Aqueous Manganese–Metal Hydride Hybrid Battery. Advanced Materials, 2020, 32, e2001106.	11.1	22
39	Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems. Lecture Notes in Computer Science, 2013, , 426-433.	1.0	21
40	Effect of particle size on the electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy, 2009, 34, 3389-3394.	3.8	20
41	Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials, 2015, 5, 2335-2347.	1.9	19
42	Halogen Storage Electrode Materials for Rechargeable Batteries. Energy and Environmental Materials, 2022, 5, 1155-1179.	7.3	19
43	Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity. Journal of Non-Crystalline Solids, 2017, 473, 120-124.	1.5	17
44	Electrochemical energy storage of Co powders in alkaline electrolyte. Electrochimica Acta, 2010, 55, 1169-1174.	2.6	15
45	Low-Temperature Synthesis of LiFePO ₄ Nanoplates/C Composite for Lithium Ion Batteries. Energy & Fuels, 2020, 34, 11597-11605.	2.5	15
46	Bismuth chloride@mesocellular carbon foam nanocomposite cathode materials for rechargeable chloride ion batteries. Chinese Chemical Letters, 2022, 33, 2200-2204.	4.8	15
47	Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Advances, 2012, 2, 2149.	1.7	14
48	Halogenidâ€basierte Materialien und Chemie für wiederaufladbare Batterien. Angewandte Chemie, 2020, 132, 5954-6004.	1.6	14
49	Effect of Mechanical Milling on the Structure and Electrochemical Properties of Ti2Ni Alloy in an Alkaline Battery. Energy & Fuels, 2009, 23, 4678-4682.	2.5	13
50	Electrochemical properties of Co(OH)2 powders as an anode in an alkaline battery. Journal of Materials Science, 2010, 45, 3752-3756.	1.7	13
51	Structural evolution and electrochemical hydrogenation behavior of Ti2Ni alloy. Intermetallics, 2010, 18, 1086-1090.	1.8	13
52	Electrochemical properties of Ti–Ni–H powders prepared by milling titanium hydride and nickel. International Journal of Hydrogen Energy, 2010, 35, 3076-3079.	3.8	11
53	Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1840008.	0.7	11
54	Polyxylylviologen Chloride as an Organic Electrode Material for Efficient Reversible Chloride-Ion Storage. ACS Applied Energy Materials, 2022, 5, 6980-6985.	2.5	11

#	Article	lF	CITATIONS
55	The spinel phase LiMnTiO4 as a potential cathode for rechargeable lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 6366-6372.	1.1	10
56	Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2015, 618, 210-216.	2.8	10
57	Ti substituted Ni-free Zr65-xTixCu17.5Fe10Al7.5 bulk metallic glasses with significantly enhanced glass-forming ability and mechanical properties. Journal of Alloys and Compounds, 2019, 773, 713-718.	2.8	10
58	Vanadium oxychloride as cathode for rechargeable aluminum batteries. Journal of Alloys and Compounds, 2019, 806, 1109-1115.	2.8	9
59	Resol and urea derived N-doped porous carbon for Na-ion storage. Materials Chemistry and Physics, 2020, 254, 123535.	2.0	9
60	Electrochemical redox mechanism of Co–B–H anode material and its optimization by a novel electrolyte additive. RSC Advances, 2013, 3, 1327-1331.	1.7	8
61	Improving Top- <i>N</i> Recommendation Performance Using Missing Data. Mathematical Problems in Engineering, 2015, 2015, 1-13.	0.6	8
62	Spinel LiMn2â^'x Si x O4 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Science China Materials, 2016, 59, 558-566.	3.5	8
63	Intelligent upgrading of plant breeding: Decision support tools in the golden seed breeding cloud platform. Computers and Electronics in Agriculture, 2022, 194, 106672.	3.7	8
64	Improving Diversity of User-Based Two-Step Recommendation Algorithm with Popularity Normalization. Lecture Notes in Computer Science, 2016, , 15-26.	1.0	7
65	Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 771, 140-146.	2.8	7
66	Nitrogen/chlorine-doped carbon nanodisk-encapsulated hematite nanoparticles for high-performance lithium-ion storage. Journal of Alloys and Compounds, 2020, 843, 156045.	2.8	7
67	Chloride ion storage performance of polyaniline/graphene nanocomposite in aqueous sodium chloride solution. Materials Research Bulletin, 2021, 138, 111209.	2.7	7
68	Synergistic effects in an AB5–Co material as an anode for a secondary alkaline battery. International Journal of Hydrogen Energy, 2010, 35, 4342-4346.	3.8	6
69	Image enhancement for crop trait information acquisition system. Information Processing in Agriculture, 2018, 5, 433-442.	2.9	6
70	Improved electrochemical properties of flower-like Co hierarchitectures as anode materials for alkaline secondary batteries. Functional Materials Letters, 2017, 10, 1750076.	0.7	4
71	Carbon Nanotube Supported Li-Excess Cation-Disordered Li1.24Fe0.38Ti0.38O2 Cathode with Enhanced Lithium-Ion Storage Performance. Journal of Electronic Materials, 2021, 50, 5029-5036.	1.0	4
72	Electrochemical properties of Co-S/x wt.% AB5 composite materials. Science China Technological Sciences, 2015, 58, 1355-1359.	2.0	3

#	Article	IF	CITATIONS
73	Batteries: Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic Electrolytes (Adv. Energy Mater. 3/2015). Advanced Energy Materials, 2015, 5, .	10.2	2
74	Plant Breeding Evaluation with Rank Entropy-based Decision Tree. IFAC-PapersOnLine, 2016, 49, 336-340.	0.5	2
75	Plant Breeding Evaluation Based on Coupled Feature Representation. IEEE Access, 2020, 8, 153641-153650.	2.6	1
76	Porous TiO2â^'x with oxygen deficiency as sulfur host for lithium–sulfur batteries. Functional Materials Letters, 0, , 2143004.	0.7	1
77	Phoenix Tree Leaves–Derived Biomass Carbons for Sodium-Ion Batteries. , 2021, , 135-146.		0