David W Mccamant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747655/publications.pdf

Version: 2024-02-01

147726 4,390 56 31 citations h-index papers

g-index 59 59 59 4781 docs citations times ranked citing authors all docs

197736

49

#	Article	IF	CITATIONS
1	Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman. Science, 2005, 310, 1006-1009.	6.0	600
2	Femtosecond Stimulated Raman Spectroscopy. Annual Review of Physical Chemistry, 2007, 58, 461-488.	4.8	549
3	Electron–phonon interaction in efficient perovskite blue emitters. Nature Materials, 2018, 17, 550-556.	13.3	472
4	Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods. Review of Scientific Instruments, 2004, 75, 4971-4980.	0.6	285
5	Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in β-Caroteneâ€. Journal of Physical Chemistry A, 2003, 107, 8208-8214.	1.1	184
6	Time-Resolved EPR Studies of Photogenerated Radical Ion Pairs Separated byp-Phenylene Oligomers and of Triplet States Resulting from Charge Recombinationâ€. Journal of Physical Chemistry B, 2006, 110, 25163-25173.	1.2	175
7	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5 . 8	147
8	Theory of femtosecond stimulated Raman spectroscopy. Journal of Chemical Physics, 2004, 121, 3632-3642.	1.2	140
9	Intersystem Crossing in Halogenated Bodipy Chromophores Used for Solar Hydrogen Production. Journal of Physical Chemistry Letters, 2011, 2, 223-227.	2.1	140
10	Femtosecond Stimulated Raman Study of Excited-State Evolution in Bacteriorhodopsin. Journal of Physical Chemistry B, 2005, 109, 10449-10457.	1.2	129
11	Sensitizing the Sensitizer: The Synthesis and Photophysical Study of Bodipyâ^'Pt(II)(diimine)(dithiolate) Conjugates. Journal of the American Chemical Society, 2011, 133, 350-364.	6.6	127
12	Femtosecond Broadband Stimulated Raman: A New Approach for High-Performance Vibrational Spectroscopy. Applied Spectroscopy, 2003, 57, 1317-1323.	1,2	121
13	Femtosecond Time-Resolved Stimulated Raman Spectroscopy of the S2(1Bu+) Excited State of \hat{l}^2 -Carotene. Journal of Physical Chemistry A, 2004, 108, 5921-5925.	1.1	109
14	Platinum(II) Terpyridyl Acetylide Complexes on Platinized TiO2: Toward the Photogeneration of H2 in Aqueous Media. Inorganic Chemistry, 2009, 48, 9653-9663.	1.9	75
15	Direct Observation of the Preference of Hole Transfer over Electron Transfer for Radical Ion Pair Recombination in Donorâ-'Bridgeâ-'Acceptor Molecules. Journal of the American Chemical Society, 2008, 130, 830-832.	6.6	69
16	Vibrational Relaxation in \hat{l}^2 -Carotene Probed by Picosecond Stokes and Anti-Stokes Resonance Raman Spectroscopy. Journal of Physical Chemistry A, 2002, 106, 6030-6038.	1.1	62
17	Photoinduced Charge Transfer in Porphyrin–Cobaloxime and Corrole–Cobaloxime Hybrids. Journal of Physical Chemistry C, 2013, 117, 1647-1655.	1.5	62
18	Multimode Charge-Transfer Dynamics of 4-(Dimethylamino)benzonitrile Probed with Ultraviolet Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 10522-10534.	1.2	60

#	Article	IF	Citations
19	Resonance Raman Structural Evidence that the Cis-to-Trans Isomerization in Rhodopsin Occurs in Femtoseconds. Journal of Physical Chemistry B, 2001, 105, 1240-1249.	1.2	56
20	Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3987-96.	3.3	52
21	Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. Journal of the American Chemical Society, 2018, 140, 2575-2586.	6.6	52
22	Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile. Journal of Chemical Physics, 2009, 131, 214502.	1.2	51
23	Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. Journal of Physical Chemistry B, 2015, 119, 10025-10034.	1.2	50
24	Efficient Bimolecular Mechanism of Photochemical Hydrogen Production Using Halogenated Boron-Dipyrromethene (Bodipy) Dyes and a Bis(dimethylglyoxime) Cobalt(III) Complex. Journal of Physical Chemistry B, 2016, 120, 527-534.	1.2	49
25	Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay. Journal of Chemical Physics, 2005, 122, 024505.	1.2	47
26	Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy. Journal of Chemical Physics, 2009, 131, 244512.	1.2	44
27	Spin Dynamics of Photogenerated Triradicals in Fixed Distance Electron Donorâ"Chromophoreâ"Acceptorâ"TEMPO Molecules. Journal of Physical Chemistry A, 2006, 110, 7323-7333.	1.1	42
28	From Seconds to Femtoseconds: Solar Hydrogen Production and Transient Absorption of Chalcogenorhodamine Dyes. Journal of the American Chemical Society, 2014, 136, 7740-7750.	6.6	38
29	Probing the Charge Transfer Reaction Coordinate of 4-(Dimethylamino)benzonitrile with Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 14646-14656.	1.2	35
30	Vibrational structure of the S2 (1Bu) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy. Chemical Physics Letters, 2003, 382, 81-86.	1.2	33
31	Re-Evaluation of Rhodopsin's Relaxation Kinetics Determined from Femtosecond Stimulated Raman Lineshapes. Journal of Physical Chemistry B, 2011, 115, 9299-9305.	1.2	33
32	A perylenedicarboxamide linker for DNA hairpins. Tetrahedron, 2007, 63, 3457-3464.	1.0	31
33	Excited-State Planarization in Donor–Bridge Dye Sensitizers: Phenylene versus Thiophene Bridges. Journal of the American Chemical Society, 2018, 140, 11046-11057.	6.6	30
34	Panchromatic Sensitization with Zn II Porphyrinâ€Based Photosensitizers for Lightâ€Driven Hydrogen Production. ChemSusChem, 2018, 11, 2517-2528.	3.6	30
35	Femtosecond Stimulated Raman Spectroscopy Using a Scanning Multichannel Technique. Applied Spectroscopy, 2012, 66, 227-232.	1.2	24
36	Ultraviolet Light Makes dGMP Floppy: Femtosecond Stimulated Raman Spectroscopy of 2′-Deoxyguanosine 5′-Monophosphate. Journal of Physical Chemistry B, 2017, 121, 4722-4732.	1.2	23

#	Article	IF	Citations
37	Pump power dependence in resonance femtosecond stimulated Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 1263-1272.	1.2	21
38	Deactivating Unproductive Pathways in Multichromophoric Sensitizers. Journal of Physical Chemistry A, 2014, 118, 10663-10672.	1.1	21
39	A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes. Photochemical and Photobiological Sciences, 2016, 15, 1417-1432.	1.6	17
40	Chromophoric Dyads for the Light-Driven Generation of Hydrogen: Investigation of Factors in the Design of Multicomponent Photosensitizers for Proton Reduction. Inorganic Chemistry, 2016, 55, 8348-8358.	1.9	17
41	Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields. Journal of Physical Chemistry B, 2016, 120, 1250-1258.	1.2	16
42	Measurement and Theoretical Interpretation of Exciton Diffusion as a Function of Intermolecular Separation for Squaraines Targeted for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2020, 124, 4032-4043.	1.5	14
43	Phase-Matching and Dilution Effects in Two-Dimensional Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 6205-6216.	1.1	12
44	Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump. Applied Optics, 2010, 49, 1880.	2.1	11
45	Stimulated Raman spectroscopy using chirped pulses. Journal of Raman Spectroscopy, 2014, 45, 918-929.	1.2	9
46	Unravelling the Reaction Mechanism for the Fast Photocyclisation of 2â€Benzoylpyridine in Aqueous Solvent by Timeâ€Resolved Spectroscopy and Density Functional Theory Calculations. Chemistry - A European Journal, 2010, 16, 6961-6972.	1.7	8
47	Excited State Torsional Processes in Chalcogenopyrylium Monomethine Dyes. Journal of Physical Chemistry A, 2019, 123, 8807-8822.	1.1	7
48	Intermolecular Charge Separation in Aggregated Rhodamine Dyes Used in Solar Hydrogen Production. Journal of Physical Chemistry C, 2018, 122, 16519-16531.	1.5	6
49	Electron Transfer in Rhodamine–TiO ₂ Complexes Studied as a Function of Chalcogen and Bridge Substitution. Journal of Physical Chemistry C, 2020, 124, 2851-2863.	1.5	2
50	Photoinduced Structural Dynamics Of 4-(Dimethylamino)benzonitrile (DMABN) Probed With Femtosecond Stimulated Raman Spectroscopy. , 2010, , .		1
51	Recent Advances in Two Dimensional Femtosecond Stimulated Raman Spectroscopy (2D-FSRS)., 2012,,.		1
52	Femtosecond Stimulated Raman Spectroscopy. , 2017, , 597-602.		1
53	Two Dimensional Femtosecond Stimulated Raman Spectroscopy. , 2010, , .		0
54	Unravelling the Fast Photocyclisation Reaction Mechanism(s) of 2-Benzoylpyridine in Aqueous Solvent by Time-resolved Spectroscopy. , 2010, , .		0

#	Article	IF	CITATIONS
55	Two Dimensional Femtosecond Stimulated Raman Spectroscopy. , 2010, , .		O
56	Two Dimensional Femtosecond Stimulated Raman Spectroscopy: A New Technique to Probe Vibrational Coupling. , 2010, , .		0