Franklin Outten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747645/publications.pdf

Version: 2024-02-01

40 papers

4,113 citations

172457 29 h-index 302126 39 g-index

42 all docs 42 docs citations

42 times ranked 3868 citing authors

#	Article	IF	CITATIONS
1	The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli. Journal of Biological Chemistry, 2001, 276, 30670-30677.	3.4	492
2	A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Molecular Microbiology, 2004, 52, 861-872.	2.5	400
3	Fe-S Cluster Assembly Pathways in Bacteria. Microbiology and Molecular Biology Reviews, 2008, 72, 110-125.	6.6	306
4	Identification of a Copper-Responsive Two-Component System on the Chromosome of Escherichia coli K-12. Journal of Bacteriology, 2000, 182, 5864-5871.	2.2	299
5	Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR. Journal of Biological Chemistry, 2000, 275, 31024-31029.	3.4	288
6	The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli. Journal of Biological Chemistry, 2003, 278, 45713-45719.	3.4	252
7	DNA Distortion Mechanism for Transcriptional Activation by ZntR, a Zn(II)-responsive MerR Homologue in Escherichia coli. Journal of Biological Chemistry, 1999, 274, 37517-37524.	3.4	183
8	Repair of Oxidized Iron-Sulfur Clusters in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 44590-44599.	3.4	166
9	Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7539-7544.	7.1	154
10	IscR Controls Iron-Dependent Biofilm Formation in <i>Escherichia coli</i> by Regulating Type I Fimbria Expression. Journal of Bacteriology, 2009, 191, 1248-1257.	2.2	151
11	SufE Transfers Sulfur from SufS to SufB for Iron-Sulfur Cluster Assembly. Journal of Biological Chemistry, 2007, 282, 13342-13350.	3.4	140
12	SufD and SufC ATPase Activity Are Required for Iron Acquisition during in Vivo Fe-S Cluster Formation on SufB. Biochemistry, 2010, 49, 9402-9412.	2.5	110
13	Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway. Biochemistry, 2014, 53, 5834-5847.	2.5	106
14	Spectroscopy of Cu(II)-PcoC and the Multicopper Oxidase Function of PcoA, Two Essential Components of Escherichia coli pcoCopper Resistance Operonâ€. Biochemistry, 2002, 41, 10046-10055.	2.5	92
15	The SufBCD Feâ^'S Scaffold Complex Interacts with SufA for Feâ^'S Cluster Transfer. Biochemistry, 2009, 48, 10644-10653.	2.5	91
16	Native Escherichia coli SufA, Coexpressed with SufBCDSE, Purifies as a [2Feâ^'2S] Protein and Acts as an Feâ^'S Transporter to Feâ^'S Target Enzymes. Journal of the American Chemical Society, 2009, 131, 6149-6153.	13.7	89
17	Iron-Based Redox Switches in Biology. Antioxidants and Redox Signaling, 2009, 11, 1029-1046.	5.4	88
18	The <i>E. coli</i> SufS–SufE sulfur transfer system is more resistant to oxidative stress than lscS–IscU. FEBS Letters, 2012, 586, 4016-4022.	2.8	77

#	Article	IF	Citations
19	Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. Journal of Biological Chemistry, 2015, 290, 29717-29731.	3.4	77
20	Recent advances in the Suf Fe–S cluster biogenesis pathway: Beyond the Proteobacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1464-1469.	4.1	63
21	The Impact of O2 on the Fe–S Cluster Biogenesis Requirements of Escherichia coli FNR. Journal of Molecular Biology, 2008, 384, 798-811.	4.2	57
22	Separate FeS scaffold and carrier functions for SufB2C2 and SufA during in vitro maturation of [2Fe2S] Fdx. Journal of Inorganic Biochemistry, 2012, 116, 126-134.	3.5	45
23	Fur and the Novel Regulator Yqjl Control Transcription of the Ferric Reductase Gene <i>yqjH</i> in <i>Escherichia coli</i> Journal of Bacteriology, 2011, 193, 563-574.	2.2	44
24	Fe-S cluster biogenesis by the bacterial Suf pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118829.	4.1	40
25	Molecular Dynamism of Fe–S Cluster Biosynthesis Implicated by the Structure of the SufC2–SufD2 Complex. Journal of Molecular Biology, 2009, 387, 245-258.	4.2	39
26	Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biology, 2019, 21, 101064.	9.0	39
27	Iron-sulfur clusters as oxygen-responsive molecular switches. Nature Chemical Biology, 2007, 3, 206-207.	8.0	36
28	Escherichia coli SufE Sulfur Transfer Protein Modulates the SufS Cysteine Desulfurase through Allosteric Conformational Dynamics*. Journal of Biological Chemistry, 2013, 288, 36189-36200.	3.4	35
29	Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation. Journal of Biological Chemistry, 2019, 294, 50-62.	3.4	35
30	Mutational Analysis To Define an Activating Region on the Redox-Sensitive Transcriptional Regulator OxyR. Journal of Bacteriology, 2006, 188, 8335-8342.	2.2	23
31	Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues. Journal of Biological Chemistry, 2019, 294, 12444-12458.	3.4	21
32	Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS. Biochemistry, 2019, 58, 687-696.	2.5	20
33	Changes in Protein Dynamics in <i>Escherichia coli</i> SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems. Biochemistry, 2018, 57, 5210-5217.	2.5	13
34	Lability and Liability of Endogenous Copper Pools. Journal of Bacteriology, 2013, 195, 4553-4555.	2.2	11
35	SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase. Biochemistry, 2015, 54, 4824-4833.	2.5	11
36	Communication between Binding Sites Is Required for Yqjl Regulation of Target Promoters within the <i>yqjH-yqjI</i> Intergenic Region. Journal of Bacteriology, 2014, 196, 3199-3207.	2.2	7

#	Article	IF	CITATIONS
37	Nickel exposure reduces enterobactin production in <i>Escherichia coli</i> . MicrobiologyOpen, 2019, 8, e00691.	3.0	6
38	Conserved cysteine residues are necessary for nickel-induced allosteric regulation of the metalloregulatory protein Yqjl (NfeR) in E. coli. Journal of Inorganic Biochemistry, 2018, 184, 123-133.	3.5	3
39	12. A stress-responsive Fe-S cluster biogenesis system in bacteria – the suf operon of Gammaproteobacteria. , 2014, , 297-324.		1
40	Ni-NTA Affinity Chromatography to Characterize Protein–Protein Interactions During Fe-S Cluster Biogenesis. Methods in Molecular Biology, 2021, 2353, 125-136.	0.9	1