Catherine S J Cazin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747563/publications.pdf

Version: 2024-02-01

53751 69214 6,793 134 45 77 citations h-index g-index papers 163 163 163 5420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The development of palladium catalysts for CC and Cheteroatom bond forming reactions of aryl chloride substrates. Coordination Chemistry Reviews, 2004, 248, 2283-2321.	9.5	555
2	N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in Câ€"H Bond Activation. Accounts of Chemical Research, 2012, 45, 778-787.	7.6	320
3	Carboxylation of NH/CH Bonds Using Nâ€Heterocyclic Carbene Copper(I) Complexes. Angewandte Chemie - International Edition, 2010, 49, 8674-8677.	7.2	309
4	Copper–NHC complexes in catalysis. Coordination Chemistry Reviews, 2015, 293-294, 48-79.	9.5	214
5	Copper N-heterocyclic carbene complexes in catalysis. Catalysis Science and Technology, 2013, 3, 912.	2.1	187
6	[Pd(IPr*)(cinnamyl)Cl]: An Efficient Preâ€catalyst for the Preparation of Tetraâ€ <i>ortho</i> â€substituted Biaryls by Suzuki–Miyaura Crossâ€Coupling. Chemistry - A European Journal, 2012, 18, 4517-4521.	1.7	164
7	High-Activity Catalysts for Suzuki Coupling and Amination Reactions with Deactivated Aryl Chloride Substrates:Â Importance of the Palladium Source. Organometallics, 2003, 22, 987-999.	1.1	159
8	Highly active catalysts for the Suzuki coupling of aryl chlorides. Chemical Communications, 2001 , , $1540\text{-}1541$.	2.2	156
9	Simple Mixed Tricyclohexylphosphane–Triarylphosphite Complexes as Extremely High-Activity Catalysts for the Suzuki Coupling of Aryl Chlorides. Angewandte Chemie - International Edition, 2002, 41, 4120-4122.	7.2	150
10	Copper N-heterocyclic carbene (NHC) complexes as carbene transfer reagents. Chemical Communications, 2010, 46, 6924.	2.2	137
11	A general synthetic route to $[Cu(X)(NHC)]$ (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chemical Communications, 2013, 49, 10483.	2.2	135
12	Copper-Catalyzed Regioselective Formation of Tri- and Tetrasubstituted Vinylboronates in Air. ACS Catalysis, 2014, 4, 1564-1569.	5.5	131
13	Simple and versatile synthesis of copper and silver N-heterocyclic carbene complexes in water or organic solvents. Dalton Transactions, 2010, 39, 4489.	1.6	123
14	Room-temperature activation of aryl chlorides in Suzuki–Miyaura coupling using a [Pd(μ-Cl)Cl(NHC)]2 complex (NHC = N-heterocyclic carbene). Chemical Communications, 2008, , 3190.	2.2	119
15	A novel catalytic one-pot synthesis of carbazoles via consecutive amination and C–H activation. Chemical Communications, 2002, , 2310-2311.	2.2	111
16	Silica-supported imine palladacyclesâ€"recyclable catalysts for the Suzuki reaction?. Journal of Organometallic Chemistry, 2001, 633, 173-181.	0.8	110
17	The Isolation of [Pd{OC(O)H}(H)(NHC)(PR ₃)] (NHC = N-Heterocyclic Carbene) and Its Role in Alkene and Alkyne Reductions Using Formic Acid. Journal of the American Chemical Society, 2013, 135, 4588-4591.	6.6	96
18	Decarboxylation of aromatic carboxylic acids by gold(<scp>i</scp>)- <i>N</i> -heterocyclic carbene (NHC) complexes. Chemical Communications, 2011, 47, 5455-5457.	2.2	92

#	Article	IF	CITATIONS
19	Influence of a Very Bulky <i>N-</i> Heterocyclic Carbene in Gold-Mediated Catalysis. Organometallics, 2011, 30, 5463-5470.	1.1	92
20	Mixed Phosphite/ <i>N</i> -Heterocyclic Carbene Complexes: Synthesis, Characterization and Catalytic Studies. Organometallics, 2010, 29, 1443-1450.	1.1	90
21	Mixed N-heterocyclic carbene/phosphite ruthenium complexes: towards a new generation of olefin metathesis catalysts. Chemical Communications, 2010, 46, 7115.	2.2	88
22	Heteroleptic Bis(N-heterocyclic carbene)Copper(I) Complexes: Highly Efficient Systems for the [3+2] Cycloaddition of Azides and Alkynes. Organometallics, 2012, 31, 7969-7975.	1.1	84
23	N-heterocyclic carbene copper(<scp>i</scp>) catalysed N-methylation of amines using CO ₂ . Dalton Transactions, 2015, 44, 18138-18144.	1.6	81
24	Mixed phosphine/N-heterocyclic carbene palladium complexes: synthesis, characterization and catalytic use in aqueous Suzuki–Miyaura reactions. Dalton Transactions, 2013, 42, 7345.	1.6	80
25	Reaction Intermediates in the Synthesis of New Hydrido, N-Heterocyclic Dicarbene Iridium(III) Pincer Complexes. Organometallics, 2009, 28, 4028-4047.	1.1	75
26	An unprecedented, figure-of-eight, dinuclear iridium(i) dicarbene and new iridium(ii) †pincer†complexes. Chemical Communications, 2008, , 3983.	2.2	74
27	Highly Active $[Pd(\hat{1}/4-Cl)(Cl)(NHC)]$ (sub>2 (NHC = N-Heterocyclic Carbene) in the Cross-Coupling of Grignard Reagents with Aryl Chlorides. Organometallics, 2009, 28, 2915-2919.	1.1	71
28	Copper(I) Complexes Bearing Carbenes Beyond Classical Nâ€Heterocyclic Carbenes: Synthesis and Catalytic Activity in "Click Chemistry†Advanced Synthesis and Catalysis, 2015, 357, 3155-3161.	2.1	68
29	Phosphine and arsine adducts of N-donor palladacycles as catalysts in the Suzuki coupling of aryl bromides. Dalton Transactions, 2003, , 3350.	1.6	66
30	Hydrogenation of CC Multiple Bonds Mediated by [Pd(NHC)(PCy ₃)] (NHC=Nâ€Heterocyclic) Tj E	TQq0 0 C	rgBT /Overloo
31	The "weak base route―leading to transition metal–N-heterocyclic carbene complexes. Chemical Communications, 2021, 57, 3836-3856.	2.2	61
32	A cooperative Pd–Cu system for direct C–H bond arylation. Chemical Communications, 2014, 50, 8927-8929.	2.2	57
33	Synthesis and Reactivity of Ruthenium Phosphite Indenylidene Complexes. Organometallics, 2012, 31, 7415-7426.	1.1	56
34	[Pd(NHC)(μ-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. IScience, 2020, 23, 101377.	1.9	56
35	Tandem ammonia borane dehydrogenation/alkene hydrogenation mediated by [Pd(NHC)(PR ₃)] (NHC = N-heterocyclic carbene) catalysts. Chemical Communications, 2013, 49, 1005-1007.	2.2	55
36	A simple synthetic entryway into palladium cross-coupling catalysis. Chemical Communications, 2017, 53, 7990-7993.	2.2	54

#	Article	IF	Citations
37	A Mechanistically and Operationally Simple Route to Metal–Nâ€Heterocyclic Carbene (NHC) Complexes. Chemistry - A European Journal, 2020, 26, 4515-4519.	1.7	54
38	Activation of Hydrogen by Palladium(0): Formation of the Mononuclear Dihydride Complex <i>trans</i> àê{Pd(H) ₂ (IPr)(PCy ₃)]. Angewandte Chemie - International Edition, 2009, 48, 5182-5186.	7.2	53
39	An unusual cationic Ru(ii) indenylidene complex and its Ru(iii) derivative—efficient catalysts for high temperature olefinmetathesis reactions. Chemical Communications, 2012, 48, 1266-1268.	2.2	52
40	Copper(<scp>i</scp>)–NHC complexes as NHC transfer agents. Dalton Transactions, 2017, 46, 628-631.	1.6	52
41	Phosphites as ligands in ruthenium-benzylidene catalysts for olefin metathesis. Chemical Communications, 2011, 47, 7060.	2.2	51
42	Oxygen Binding to $[Pd(L)(L\hat{a}\in ^2)]$ (L= NHC, $L\hat{a}\in ^2$ = NHC or PR3, NHC =N-Heterocyclic Carbene). Synthesis and Structure of a Paramagnetic trans- $[Pd(NHC)2(\hat{i}\cdot 1-O2)2]$ Complex. Journal of the American Chemical Society, 2011, 133, 1290-1293.	6.6	49
43	Conducting Olefin Metathesis Reactions in Air: Breaking the Paradigm. ACS Catalysis, 2015, 5, 2697-2701.	5.5	47
44	Highly Active Well-Defined Palladium Precatalysts for the Efficient Amination of Aryl Chlorides. Organometallics, 2011, 30, 4432-4436.	1.1	46
45	Generalization of the Copper to Lateâ€Transitionâ€Metal Transmetallation to Carbenes beyond Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2016, 22, 9404-9409.	1.7	46
46	Auâ<â<â <hâ^'c -="" 2021,="" 21014-21024.<="" 60,="" angewandte="" as="" bonds="" catalysis.="" chemie="" design="" edition,="" gold(i)="" hydrogen="" in="" international="" principle="" td=""><td>7.2</td><td>45</td></hâ^'c>	7.2	45
47	Simple Synthetic Routes to Carbeneâ€Mâ€Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry - A European Journal, 2021, 27, 11904-11911.	1.7	42
48	Recent advances in the design and use of immobilised N-heterocyclic carbene ligands for transition-metal catalysis. Comptes Rendus Chimie, 2009, 12, 1173-1180.	0.2	40
49	A new stable CNHCâ€Hâ€NHCN-heterocyclic dicarbene ligand: its mono- and dinuclear Ir(i) and Ir(i)–Rh(i) complexes. Dalton Transactions, 2009, , 3824.	1.6	39
50	A simple access to transition metal cyclopropenylidene complexes. Chemical Communications, 2015, 51, 4778-4781.	2.2	39
51	Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence. Chemical Science, 2015, 6, 3248-3261.	3.7	39
52	Di- and tri-alkylphosphine adducts of S-donor palladacycles as catalysts in the Suzuki coupling of aryl chlorides. Dalton Transactions, 2004, , 3864.	1.6	37
53	Highly efficient catalytic hydrodehalogenation of polychlorinated biphenyls (PCBs). Chemical Communications, 2009, , 5752.	2.2	37
54	Sustainability in Ru- and Pd-based catalytic systems using N-heterocyclic carbenes as ligands. Chemical Society Reviews, 2021, 50, 3094-3142.	18.7	37

#	Article	IF	Citations
55	Simple tricyclohexylphosphine–palladium complexes as efficient catalysts for the Stille coupling of deactivated aryl chlorides. Chemical Communications, 2002, , 2608.	2.2	36
56	Towards environmentally friendlier Suzuki–Miyaura reactions with precursors of Pd-NHC (NHC =) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5'
57	Energetics of the ruthenium–halide bond in olefin metathesis (pre)catalysts. Dalton Transactions, 2013, 42, 7312-7317.	1.6	35
58	Continuous Flow Synthesis of Metal–NHC Complexes**. Chemistry - A European Journal, 2021, 27, 5653-5657.	1.7	34
59	Versatile Relay and Cooperative Palladium(0) <i>N</i> â€Heterocyclic Carbene/Copper(I) <i>N</i> â€Heterocyclic Carbene Catalysis for the Synthesis of Triâ€and Tetrasubstituted Alkenes. ChemCatChem, 2015, 7, 2108-2112.	1.8	33
60	Synthesis of Homoleptic and Heteroleptic Bis-N-heterocylic Carbene Group 11 Complexes. Organometallics, 2015, 34, 419-425.	1.1	33
61	Mechanochemical synthesis of Cu(<scp>i</scp>)-N-heterocyclic carbene complexes. Green Chemistry, 2020, 22, 5253-5256.	4.6	32
62	Two commercially available initiators for the retarded ring-opening metathesis polymerization of dicyclopentadiene. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 1513-1517.	0.9	31
63	Selective ethenolysis and oestrogenicity of compounds from cashew nut shell liquid. Green Chemistry, 2014, 16, 2846-2856.	4.6	31
64	Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) Nâ∈Heterocyclic Carbene Complexes. ChemCatChem, 2016, 8, 3381-3388.	1.8	31
65	[Pd(NHC)(PR3)] (NHC = N-heterocyclic carbene) catalysed alcohol oxidation using molecular oxygen. Dalton Transactions, 2012, 41, 12619.	1.6	30
66	Mixed N-Heterocyclic Carbene/Phosphite Ruthenium Complexes: The Effect of a Bulkier NHC Organometallics, 2013, 32, 6240-6247.	1.1	30
67	Copper <i>N</i> -Heterocyclic Carbene Complexes As Active Catalysts for the Synthesis of 2-Substituted Oxazolines from Nitriles and Aminoalcohols. Journal of Organic Chemistry, 2015, 80, 9910-9914.	1.7	30
68	Mono- and dinuclear cobalt complexes with chelating or bridging bidentate P,N phosphino- and phosphinito-oxazoline ligands: synthesis, structures and catalytic ethylene oligomerisation. Dalton Transactions, 2007, , 4472.	1.6	29
69	Remarkable Base Effect in the Synthesis of Mono- and Dinuclear Iridium(I) NHC Complexes. Organometallics, 2009, 28, 2460-2470.	1.1	29
70	Lightâ€Stable Silver Nâ€Heterocyclic Carbene Catalysts for the Alkynylation of Ketones in Air. ChemCatChem, 2016, 8, 209-213.	1.8	29
71	Title is missing!. Angewandte Chemie, 2002, 114, 4294-4296.	1.6	28
72	Dinuclear N-heterocyclic carbene copper(I) complexes. Coordination Chemistry Reviews, 2018, 355, 380-403.	9.5	27

#	Article	IF	Citations
73	Neutral Dinuclear Copper(I)-NHC Complexes: Synthesis and Application in the Hydrosilylation of Ketones. ACS Catalysis, 2017, 7, 238-242.	5.5	26
74	Bulky-Yet-Flexible Carbene Ligands and Their Use in Palladium Cross-Coupling. Inorganics, 2019, 7, 78.	1.2	26
75	Palladate Precatalysts for the Formation of C–N and C–C Bonds. Organometallics, 2019, 38, 2812-2817.	1.1	23
76	Gold(<scp>i</scp>) catalysed regio- and stereoselective intermolecular hydroamination of internal alkynes: towards functionalised azoles. Organic and Biomolecular Chemistry, 2019, 17, 3805-3811.	1.5	23
77	[Pd(\hat{l} /4-Cl)Cl(IPr*)]2: a highly hindered pre-catalyst for the synthesis of tetra-ortho-substituted biaryls via Grignard reagent cross-coupling. Organic and Biomolecular Chemistry, 2014, 12, 5586-5589.	1.5	22
78	Selective NaOH-catalysed hydration of aromatic nitriles to amides. Catalysis Science and Technology, 2015, 5, 2865-2868.	2.1	22
79	Homoleptic and heteroleptic bis-NHC Cu(<scp>i</scp>) complexes as carbene transfer reagents. Dalton Transactions, 2016, 45, 4970-4973.	1.6	22
80	Inner-Sphere versus Outer-Sphere Coordination of BF ₄ [–] in a NHC-Gold(I) Complex. Organometallics, 2017, 36, 2861-2869.	1.1	22
81	Synthesis and reactivity of [Au(NHC)(Bpin)] complexes. Chemical Communications, 2019, 55, 6799-6802.	2.2	22
82	Insights into the Catalytic Activity of [Pd(NHC)(cin)Cl] (NHC=IPr, IPr ^{Cl} , IPr ^{Br}) Complexes in the Suzuki–Miyaura Reaction. ChemCatChem, 2018, 10, 601-611.	1.8	21
83	Highly Active [Pd(μâ€Cl)Cl(NHC)] ₂ Complexes in the Mizoroki–Heck Reaction. European Journal of Inorganic Chemistry, 2013, 2013, 2007-2010.	1.0	20
84	Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. Topics in Organometallic Chemistry, 2015, , 225-278.	0.7	20
85	Hydrophenoxylation of internal alkynes catalysed with a heterobimetallic Cu-NHC/Au-NHC system. Dalton Transactions, 2017, 46, 2439-2444.	1.6	20
86	Alkyne insertion reactions of [RuH(κ2-S2CNEt2)(CO)(PPh3)2]: synthesis of alkenyl, alkynyl and enynyl complexes. Journal of Organometallic Chemistry, 2000, 598, 20-23.	0.8	19
87	Highly active copper-N-heterocyclic carbene catalysts for the synthesis of phenols. RSC Advances, 2012, 2, 11675.	1.7	19
88	N-Heterocyclic carbenes. Dalton Transactions, 2013, 42, 7254.	1.6	19
89	Investigating the Structure and Reactivity of Azolyl-Based Copper(I)–NHC Complexes: The Role of the Anionic Ligand. ACS Catalysis, 2017, 7, 8176-8183.	5.5	19
90	Expedient Syntheses of Neutral and Cationic Au(I)–NHC Complexes. Organometallics, 2017, 36, 3645-3653.	1.1	19

#	Article	IF	CITATIONS
91	General Mechanochemical Synthetic Protocol to Late Transition Metal–NHC (<i>N</i> -Heterocyclic) Tj ETQq1	1 0,784314 3.2	l rgBT /Over
92	Reactions of Amines with Zwitterionic Quinoneimines: Synthesis of New Anionic and Zwitterionic Quinonoids. European Journal of Organic Chemistry, 2009, 2009, 3340-3350.	1.2	18
93	Phosphite ligands in Ru-based olefin metathesis catalysts. Monatshefte Fýr Chemie, 2015, 146, 1043-1052.	0.9	18
94	Transition metal bifluorides. Coordination Chemistry Reviews, 2016, 307, 65-80.	9.5	18
95	Energy transfer (EnT) photocatalysis enabled by gold-N-heterocyclic carbene (NHC) complexes. Chemical Science, 2022, 13, 6852-6857.	3.7	18
96	Ruthenium Olefin Metathesis Catalysts Containing Fluoride. ACS Catalysis, 2015, 5, 3932-3939.	5 . 5	17
97	Structure and Reactivity of New Iridium Complexes with Bis(Oxazoline)-Phosphonito Ligands. Inorganic Chemistry, 2009, 48, 11415-11424.	1.9	16
98	Catalytic and Structural Studies of Hoveyda–Grubbs Type Pre atalysts Bearing Modified Ether Ligands. Advanced Synthesis and Catalysis, 2012, 354, 2734-2742.	2.1	16
99	A straightforward metal-free synthesis of 2-substituted thiazolines in air. Green Chemistry, 2015, 17, 3090-3092.	4.6	15
100	Auâ‹â‹â‹Hâ^'C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 21182-21192.	1.6	14
101	The role of the metal in the dual-metal catalysed hydrophenoxylation of diphenylacetylene. Catalysis Science and Technology, 2018, 8, 3638-3648.	2.1	13
102	Synthesis of Diâ€Substituted Alkynes <i>via</i> Palladiumâ€Catalyzed Decarboxylative Coupling and Câ€H Activation. ChemistrySelect, 2019, 4, 5-9.	0.7	13
103	Copper(I) $\hat{a}\in$ "N-Heterocyclic Carbene Complexes as Efficient Catalysts for the Synthesis of 1,4-Disubstituted 1,2,3-Sulfonyltriazoles in Air. Organometallics, 2018, 37, 679-683.	1.1	12
104	Synthesis and catalytic activity of palladium complexes bearing <i>N</i> -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo [5.3.2.1] tridecane (CAP) ligands. Dalton Transactions, 2021, 50, 9491-9499.	1.6	12
105	[Pd(NHC)(PR3)] Complexes: Versatile Tools for Tandem Dehydrogenation-Hydrogenation Processes. Synlett, 2013, 24, 1877-1881.	1.0	11
106	Synthesis, characterization and catalytic activity of stable [(NHC)H][ZnXY2] (NHC =N-Heterocyclic) Tj ETQq0 0 0) rgBT /Ove	rlock 10 Tf 5
107	Mizoroki–Heck Crossâ€Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Preâ€Catalysts. European Journal of Inorganic Chemistry, 2019, 2019, 4695-4699.	1.0	11
108	Simple synthesis of [Ru(CO $<$ sub $>3<$ /sub $>$)(NHC)($<$ i $>$ p $<$ /i $>$ -cymene)] complexes and their use in transfer hydrogenation catalysis. Dalton Transactions, 2021, 50, 13012-13019.	1.6	11

#	Article	IF	Citations
109	A Green Synthesis of Carbeneâ€Metalâ€Amides (CMAs) and Carbolineâ€Derived CMAs with Potent <i>inâ€vitro</i> and <i>ex vivo</i> Anticancer Activity. ChemMedChem, 2022, , .	1.6	10
110	Cu–NHC azide complex: synthesis and reactivity. Chemical Communications, 2019, 55, 12068-12071.	2.2	9
111	A Simple Synthetic Route to Wellâ€Defined [Pd(NHC)Cl(1â€ ^t Buâ€indenyl)] Preâ€catalysts for Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	9
112	A green route to platinum N-heterocyclic carbene complexes: mechanism and expanded scope. Dalton Transactions, 2022, 51, 6204-6211.	1.6	8
113	Versatile and Highly Efficient <i>trans</i> â€[Pd(NHC)Cl ₂ (DMS/THT)] Precatalysts for Câ^N and Câ^C Coupling Reactions in Green Solvents. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
114	Electronic effects in mixed N-heterocyclic carbene/phosphite indenylidene ruthenium metathesis catalysts. Dalton Transactions, 2019, 48, 11326-11337.	1.6	7
115	Continuous Flow Synthesis of NHCâ€Coinage Metal Amido and Thiolato Complexes: A Mechanismâ€based Process Development. Chemistry Methods, 2022, 2, .	1.8	7
116	Synthesis of Carbeneâ€Metalâ€Amido (CMA) Complexes and Their Use as Precatalysts for the Activatorâ€Free, Gold atalyzed Addition of Carboxylic Acids to Alkynes. Chemistry - A European Journal, 2022, 28, .	1.7	7
117	Ruthenium indenylidene "1st generation―olefin metathesis catalysts containing triisopropyl phosphite. Beilstein Journal of Organic Chemistry, 2015, 11, 1520-1527.	1.3	6
118	Au(I)â€Catalyzed Hydration of 1â€lodoalkynes Leading to αâ€lodoketones. European Journal of Organic Chemistry, 2020, 2020, 6790-6794.	1.2	6
119	Synthetic Access to Ring-Expanded N-Heterocyclic Carbene (RE-NHC) Copper Complexes and Their Performance in Click Chemistry. Organometallics, 2021, 40, 1252-1261.	1.1	6
120	Conversion of Pd(<scp>i</scp>) off-cycle species into highly efficient cross-coupling catalysts. Dalton Transactions, 2021, 50, 5420-5427.	1.6	6
121	Synthetic Access to Aromatic α-Haloketones. Molecules, 2022, 27, 3583.	1.7	6
122	N-Heterocyclic Carbenes: An Introductory Overview. Catalysis By Metal Complexes, 2010, , 1-22.	0.6	5
123	Synthesis of Gold(I)â^'Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)â^'Difluorocarbene Species. Chemistry - A European Journal, 2021, 27, 8461-8467.	1.7	5
124	A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. European Journal of Inorganic Chemistry, 2021, 2021, 3506-3511.	1.0	5
125	Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC =) Tj ETQq1 1 0.7843	14 rgBT /0 1.6	Overlock 10
126	Aerobic synthesis of N-sulfonylamidines mediated by N-heterocyclic carbene copper(I) catalysts. Beilstein Journal of Organic Chemistry, 2020, 16, 482-491.	1.3	3

#	Article	lF	CITATIONS
127	Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC)2(Î-2-O2)]. Journal of the American Chemical Society, 2018, 140, 264-276.	6.6	2
128	N-heterocyclic carbene complexes of palladium in oxygen atom transfer reactions involving the making and breaking of N-O bonds. Inorganica Chimica Acta, 2017, 468, 285-293.	1.2	1
129	A Novel Catalytic One-Pot Synthesis of Carbazoles via Consecutive Amination and C—H Activation ChemInform, 2003, 34, no.	0.1	0
130	Simple Tricyclohexylphosphineâ€"Palladium Complexes as Efficient Catalysts for the Stille Coupling of Deactivated Aryl Chlorides. ChemInform, 2003, 34, no.	0.1	0
131	Enthalpies of ligand substitution for [Mo(η5C5H5)(CO)2(NO)] – The role of π-bonding effects in metal–ligand bond strengths. Journal of Chemical Thermodynamics, 2014, 73, 156-162.	1.0	0
132	1. Grignard Reagents and Palladium. , 2016, , 1-60.		0
133	Grignard Reagents and Palladium. ChemistrySelect, 2018, 3, .	0.7	0
134	An alkene dance. Nature Reviews Chemistry, 0, , .	13.8	0