
Daniel Fornasiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flotation of Fine Particles: A Review. Mineral Processing and Extractive Metallurgy Review, 2021, 42, 473-483.	5.0	73
2	In-situ study of the kinetics of phosphoric acid interaction with calcite and fluorapatite by Raman spectroscopy and flotation. Minerals Engineering, 2021, 162, 106729.	4.3	13
3	Understanding the effect of sulphate in mining-process water on sulphide flotation. Minerals Engineering, 2021, 165, 106865.	4.3	12
4	Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Minerals Engineering, 2020, 155, 106439.	4.3	53
5	Pre-concentration of nickel in laterite ores using physical separation methods. Minerals Engineering, 2019, 141, 105892.	4.3	36
6	The role of a fatty alcohol in improving calcium minerals flotation with oleate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 410-417.	4.7	37
7	Effect of calcium minerals reactivity on fatty acids adsorption and flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 157-166.	4.7	77
8	Upgrading nickel in laterite ores by flotation. Minerals Engineering, 2018, 121, 100-106.	4.3	25
9	Flotation of coarse composite particles: Effect of mineral liberation and phase distribution. Advanced Powder Technology, 2017, 28, 1849-1854.	4.1	22
10	Innovations in the flotation of fine and coarse particles. Journal of Physics: Conference Series, 2017, 879, 012002.	0.4	24
11	Flotation of Chalcopyrite and Molybdenite in the Presence of Organics in Water. Minerals (Basel,) Tj ETQq1 1 0.7	'84314 rgE 2.0	3T ₁ 9verlock
12	Critical copper concentration in sphalerite flotation: Effect of temperature and collector. International Journal of Mineral Processing, 2016, 146, 15-22.	2.6	35
13	Preconcentration strategies in the processing of nickel laterite ores part 3: Flotation testing. Minerals Engineering, 2015, 79, 279-286.	4.3	13
14	Effects of polyethyleneimine–phosphonate–carboxylic copolymers on the dispersion of boehmite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 10-17.	4.7	7
15	Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures. International Journal of Mineral Processing, 2015, 134, 50-57.	2.6	23
16	Boehmite suspension behaviour upon adsorption of methacrylate–phosphonate copolymers. Powder Technology, 2015, 269, 385-391.	4.2	12
17	Effect of regrinding and pulp aeration on the flotation of chalcopyrite in chalcopyrite/pyrite mixtures. Powder Technology, 2014, 267, 61-67.	4.2	11
18	Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Advanced Powder Technology, 2013, 24, 801-809.	4.1	39

#	Article	IF	CITATIONS
19	The analytical model of nanoparticle recovery by microflotation. Advances in Colloid and Interface Science, 2012, 179-182, 114-122.	14.7	11
20	Honorary Note: John Ralston, AO. Advances in Colloid and Interface Science, 2012, 179-182, 1-4.	14.7	0
21	Properties of Fatty Amine–Silica Nanoparticle Interfacial Layers at the Hexane–Water Interface. Journal of Physical Chemistry C, 2012, 116, 3050-3058.	3.1	53
22	Electrostatics and Metal Oxide Wettability. Journal of Physical Chemistry C, 2011, 115, 14914-14921.	3.1	26
23	Ultrathin Wetting Films on Hydrophilic Titania Surfaces: Equilibrium and Dynamic Behavior. Journal of Physical Chemistry C, 2011, 115, 11065-11076.	3.1	14
24	Shear-induced coalescence of oil-in-water Pickering emulsions. Journal of Colloid and Interface Science, 2011, 361, 170-177.	9.4	84
25	Rheological studies of nickel oxide and quartz/hematite mixture systems. Advanced Powder Technology, 2011, 22, 471-475.	4.1	21
26	Selective separation of very fine particles at a planar air–water interface. International Journal of Mineral Processing, 2010, 94, 35-42.	2.6	19
27	The limits of fine particle flotation. Minerals Engineering, 2010, 23, 420-437.	4.3	304
28	Structure of oil-in-water emulsions stabilised by silica and hydrophobised titania particles. Journal of Colloid and Interface Science, 2010, 342, 205-209.	9.4	37
29	Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements. Journal of Colloid and Interface Science, 2010, 345, 417-426.	9.4	49
30	Foamability of aqueous suspensions of fine graphite and quartz particles with a triblock copolymer. Journal of Colloid and Interface Science, 2010, 348, 460-468.	9.4	13
31	Interfacial displacement of nanoparticles by surfactant molecules in emulsions. Journal of Colloid and Interface Science, 2010, 349, 537-543.	9.4	86
32	Stabilisation of titania pigment particles with anionic polymeric dispersants. Powder Technology, 2010, 202, 143-150.	4.2	45
33	Reduction of Surface Hydrophobicity Using a Stimulus-Responsive Polysaccharide. Langmuir, 2010, 26, 15865-15874.	3.5	39
34	Influence of Surface Charge on Wetting Kinetics. Langmuir, 2010, 26, 17218-17224.	3.5	47
35	Electrostatic attraction between a hydrophilic solid and a bubble. Physical Chemistry Chemical Physics, 2010, 12, 14527.	2.8	30
36	Interaction force between an air bubble and a hydrophilic spherical particle in water, measured by the colloid probe technique. International Journal of Mineral Processing, 2009, 92, 121-127.	2.6	35

#	Article	IF	CITATIONS
37	Effect of adding anionic surfactant on the stability of Pickering emulsions. Journal of Colloid and Interface Science, 2009, 329, 173-181.	9.4	88
38	Brownian diffusion of ultrafine particles to an air–water interface. Advanced Powder Technology, 2009, 20, 262-266.	4.1	4
39	The Influence of Surface Hydrophobicity on Polyacrylamide Adsorption. Langmuir, 2009, 25, 4514-4521.	3.5	41
40	The encapsulation and release of guanosine from PEGylated liposomes. Journal of Liposome Research, 2009, 19, 29-36.	3.3	37
41	The terminal rise velocity of 10–100 μm diameter bubbles in water. Journal of Colloid and Interface Science, 2008, 322, 168-172.	9.4	144
42	Effect of oil soluble surfactant in emulsions stabilised by clay particles. Journal of Colloid and Interface Science, 2008, 323, 410-419.	9.4	73
43	Characterisation and stability of lipid–DNA complexes. Colloids and Surfaces B: Biointerfaces, 2008, 67, 85-91.	5.0	7
44	Kinetics of CO2 nanobubble formation at the solid/water interface. Physical Chemistry Chemical Physics, 2007, 9, 6327.	2.8	44
45	Dynamics of Dewetting at the Nanoscale Using Molecular Dynamics. Langmuir, 2007, 23, 3774-3785.	3.5	34
46	Reducing uncertainty in mineral flotation—flotation rate constant prediction for particles in an operating plant ore. International Journal of Mineral Processing, 2007, 84, 89-98.	2.6	51
47	The Limits of Fine and Coarse Particle Flotation. Canadian Journal of Chemical Engineering, 2007, 85, 739-747.	1.7	116
48	The evolution of surface layers formed during chalcopyrite leaching. Geochimica Et Cosmochimica Acta, 2006, 70, 4392-4402.	3.9	238
49	Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. International Journal of Mineral Processing, 2006, 78, 231-237.	2.6	85
50	Influence of very small bubbles on particle/bubble heterocoagulation. Journal of Colloid and Interface Science, 2006, 301, 168-175.	9.4	60
51	Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite. International Journal of Mineral Processing, 2006, 80, 169-176.	2.6	36
52	Titania pigment particles dispersion in water-based paint films. Journal of Coatings Technology Research, 2006, 3, 275-283.	2.5	29
53	Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill. Minerals Engineering, 2006, 19, 28-36.	4.3	87
54	The interfacial conformation of polypropylene glycols and their foam properties. Minerals Engineering, 2006, 19, 703-712.	4.3	11

#	Article	IF	CITATIONS
55	Colloid stability of synthetic titania and the influence of surface roughness. Journal of Colloid and Interface Science, 2005, 286, 526-535.	9.4	41
56	Pentlandite–lizardite interactions and implications for their separation by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252, 207-212.	4.7	114
57	Influence of polymer functional group architecture on titania pigment dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 183-191.	4.7	41
58	The role of surfactant structure on foam behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 233-238.	4.7	47
59	Foaming of polypropylene glycols and glycol/MIBC mixtures. Minerals Engineering, 2005, 18, 179-188.	4.3	65
60	Effect of iron content in sphalerite on flotation. Minerals Engineering, 2005, 18, 1120-1122.	4.3	44
61	Correlation between copper-activated pyrite flotation and surface species: Effect of pulp oxidation potential. Minerals Engineering, 2005, 18, 1208-1213.	4.3	49
62	Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite. International Journal of Mineral Processing, 2005, 76, 75-81.	2.6	92
63	The selective aggregation and separation of titania from a mixed suspension of silica and titania. International Journal of Mineral Processing, 2005, 78, 1-10.	2.6	14
64	Marangoni effects in aqueous polypropylene glycol foams. Journal of Colloid and Interface Science, 2005, 286, 719-729.	9.4	38
65	The interfacial conformation of polypropylene glycols and foam behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 307-315.	4.7	23
66	Effects of chemical functional groups on the polymer adsorption behavior onto titania pigment particles. Journal of Colloid and Interface Science, 2004, 274, 33-40.	9.4	68
67	Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface. Colloids and Surfaces B: Biointerfaces, 2004, 36, 147-153.	5.0	12
68	Bubble particle heterocoagulation under turbulent conditions. Journal of Colloid and Interface Science, 2003, 265, 141-151.	9.4	162
69	Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. International Journal of Mineral Processing, 2003, 69, 87-100.	2.6	123
70	Control of grinding conditions in the flotation of galena and its separation from pyrite. International Journal of Mineral Processing, 2003, 70, 67-82.	2.6	89
71	Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS. International Journal of Mineral Processing, 2003, 70, 205-219.	2.6	86
72	Calculation of the flotation rate constant of chalcopyrite particles in an ore. International Journal of Mineral Processing, 2003, 72, 227-237.	2.6	100

#	Article	IF	CITATIONS
73	Colloid Stability and the Influence of Dissolved Gas. Journal of Physical Chemistry B, 2003, 107, 2986-2994.	2.6	72
74	Very Small Bubble Formation at the Solidâ `Water Interface. Journal of Physical Chemistry B, 2003, 107, 6139-6147.	2.6	277
75	Influence of Dissolved Gas on van der Waals Forces between Bubbles and Particles. Journal of Physical Chemistry A, 2002, 106, 689-696.	2.5	42
76	The use of a factorial experimental design to study collector properties of N-allyl-O-alkyl thionocarbamate collector in the flotation of a copper ore. Minerals Engineering, 2002, 15, 333-340.	4.3	30
77	Towards prediction of oxidation during grinding I. Galena flotation. Minerals Engineering, 2002, 15, 493-498.	4.3	30
78	Polymer depressants at the talc–water interface: adsorption isotherm, microflotation and electrokinetic studies. International Journal of Mineral Processing, 2002, 67, 211-227.	2.6	134
79	Depression of iron sulphide flotation in zinc roughers. Minerals Engineering, 2001, 14, 1067-1079.	4.3	23
80	Selective depression of pyrite with polyacrylamide polymers. International Journal of Mineral Processing, 2001, 61, 13-22.	2.6	75
81	Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. International Journal of Mineral Processing, 2001, 61, 109-119.	2.6	56
82	Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 2001, 63, 17-28.	2.6	69
83	The hydrophobic force in flotation-a critique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192, 39-51.	4.7	82
84	Particle–bubble collision models — a review. Advances in Colloid and Interface Science, 2000, 85, 231-256.	14.7	274
85	Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 113-121.	4.7	152
86	Bubble–particle attachment and detachment in flotation. International Journal of Mineral Processing, 1999, 56, 133-164.	2.6	231
87	Particle–Bubble Attachment in Mineral Flotation. Journal of Colloid and Interface Science, 1999, 217, 70-76.	9.4	136
88	The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media Part II. A spectroscopic study. Physical Chemistry Chemical Physics, 1999, 1, 2799-2803.	2.8	51
89	The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media Part I. Measurement of interaction forces. Physical Chemistry Chemical Physics, 1999, 1, 2793-2798.	2.8	101
90	Oxidation of Synthetic and Natural Samples of Enargite and Tennantite:Â 2. X-ray Photoelectron Spectroscopic Study. Langmuir, 1999, 15, 4530-4536.	3.5	67

#	Article	IF	CITATIONS
91	Oxidation of Synthetic and Natural Samples of Enargite and Tennantite:Â 1. Dissolution and Zeta Potential Study. Langmuir, 1999, 15, 4524-4529.	3.5	19
92	The Inertial Hydrodynamic Interaction of Particles and Rising Bubbles with Mobile Surfaces. Journal of Colloid and Interface Science, 1998, 197, 275-292.	9.4	160
93	Influence of dissolved gas on bubble–particle heterocoagulation. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1983-1987.	1.7	48
94	Formation of a copper-butyl ethoxycarbonyl thiourea complex. Analytica Chimica Acta, 1997, 346, 237-248.	5.4	39
95	Solution properties of thionocarbamate collectors. International Journal of Mineral Processing, 1996, 46, 137-153.	2.6	31
96	Kinetics of Adsorption of Ethyl Xanthate on Pyrrhotite: In Situ UV and Infrared Spectroscopic Studies. Journal of Colloid and Interface Science, 1995, 172, 467-478.	9.4	33
97	A study of the removal of oxidation products from sulfide mineral surfaces. Minerals Engineering, 1995, 8, 1347-1357.	4.3	54
98	Bubble–particle attachment. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1997-2001.	1.7	70
99	The Effect of Surface Modification by an Organosilane on the Electrochemical Properties of Kaolinite. Clays and Clay Minerals, 1994, 42, 123-136.	1.3	95
100	Oxidation of Galena Surfaces. Journal of Colloid and Interface Science, 1994, 164, 333-344.	9.4	123
101	Oxidation of Galena. Journal of Colloid and Interface Science, 1994, 164, 345-354.	9.4	65
102	Electrochemistry of the zircon—water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 85, 37-49.	4.7	25
103	Bubble particle attachment efficiency. Minerals Engineering, 1994, 7, 657-665.	4.3	49
104	An NMR Study on the Adsorption of a Metal Chelating Agent at a Micelle/Water Interface. Journal of Colloid and Interface Science, 1993, 157, 180-184.	9.4	19
105	Aqueous film drainage at the quartz/water/air interface. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 817.	1.7	62
106	Iron hydroxide complexes and their influence on the interaction between ethyl xanthate and pyrite. Journal of Colloid and Interface Science, 1992, 151, 225-235.	9.4	62
107	An electrokinetic study of pyrite oxidation. Colloids and Surfaces, 1992, 62, 63-73.	0.9	141
108	The relative solution and interfacial hydrophobicity of ethylene oxide—propylene oxide—ethylene oxide block copolymers. Colloids and Surfaces, 1992, 69, 147-153.	0.9	5

#	Article	IF	CITATIONS
109	Ultraviolet-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite. Journal of Colloid and Interface Science, 1991, 143, 440-450.	9.4	64
110	The kinetics of electrolyte induced aggregation of Carey Lea Silver colloids. Journal of Colloid and Interface Science, 1991, 141, 168-179.	9.4	44
111	Electrochemistry of the boehmite—water interface. Colloids and Surfaces, 1990, 51, 389-403.	0.9	71
112	Study of the absorption spectra of pyrene complexed to paraquat in pentanol–sodium dodecylsulphate micelles. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2955-2960.	1.7	17
113	NMR study of the location of the anthroyloxy moiety on some n-(9-anthroyloxy)stearic acid probes solubilized in surfactant micelles. The Journal of Physical Chemistry, 1988, 92, 2301-2305.	2.9	20
114	Exciton Spectra of the 9-Aminoacridine Chromophore. Australian Journal of Chemistry, 1988, 41, 1331.	0.9	3
115	Analysis of the visible absorption and SERS excitation spectra of silver sols. Journal of Chemical Physics, 1987, 87, 3213-3217.	3.0	61
116	Paramagnetic Complexes of Manganese(II), Iron(III), and Gadolinium(III) as Contrast Agents for Magnetic Resonance Imaging. Investigative Radiology, 1987, 22, 322-327.	6.2	61
117	A linear dichroism study of colloidal silver in stretched polymer films. Chemical Physics Letters, 1987, 139, 103-108.	2.6	19
118	Vibronic exciton bands. Absorption spectra of Eosin Y dimers. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 15.	1.1	14
119	The Preparation of 99mTc—Tertiarybutylisonitrile (99mTc-TBI) by a method suitable for routine clinical use. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1986, 13, 527-532.	0.3	3
120	The binding of 9-aminoacridine to calf thymus DNA in aqueous solution electronic spectral studies. Biophysical Chemistry, 1985, 23, 31-37.	2.8	27
121	Analysis of the visible-near-ultraviolet spectrum of 9-aminoacridine using dichroic spectra in stretched polymer films. Chemical Physics Letters, 1985, 117, 176-180.	2.6	15
122	NMR compartmentalization of free water in the perfused rat heart. Magnetic Resonance in Medicine, 1985, 2, 187-194.	3.0	55
123	Vibronic exciton interactions. Resolution and interpretation of the temperature-dependent circular dichroism and absorption spectra of ApA and of dApdA. FEBS Journal, 1984, 143, 1-7.	0.2	10
124	Near-ultraviolet vibronic transitions of adenosine 5'-phosphate, adenosine, and its complexes with cis- and trans-diamminedichloroplatinum(II): spectral study of isotropic absorption, linear dichroism, and circular dichroism. Journal of the American Chemical Society, 1981, 103, 1908-1913.	13.7	12
125	Circular dichroism spectra and the interaction between acridine dyes and deoxyribonucleic acid. The Journal of Physical Chemistry, 1981, 85, 613-618.	2.9	34