List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747427/publications.pdf Version: 2024-02-01

Ιομή γλη Νοορτ

#	Article	IF	CITATIONS
1	Coating Gold Nanorods with Self-Assembling Peptide Amphiphiles Promotes Stability and Facilitates in vivo Two-Photon Imaging. Journal of Materials Chemistry B, 2022, , .	2.9	2
2	Analysis of the H-Ras mobility pattern <i>in vivo</i> shows cellular heterogeneity inside epidermal tissue. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
3	Multiplexed two-photon excitation spectroscopy of single gold nanorods. Journal of Chemical Physics, 2022, 156, 094201.	1.2	0
4	Exploring molecular biology in sequence space: The road to next-generation single-molecule biophysics. Molecular Cell, 2022, 82, 1788-1805.	4.5	3
5	Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Research, 2021, 49, 4338-4349.	6.5	16
6	A critical role for linker DNA in higher-order folding of chromatin fibers. Nucleic Acids Research, 2021, 49, 2537-2551.	6.5	19
7	(A)Specific DNA Binding of Archaeal Histones, the Formation and Positioning of Hypernucleosomes. Biophysical Journal, 2021, 120, 317a.	0.2	0
8	Chromatin fibers stabilize nucleosomes under torsional stress. Nature Communications, 2020, 11, 126.	5.8	46
9	Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nature Communications, 2020, 11, 3638.	5.8	62
10	Multiplexed Nanometric 3D Tracking of Microbeads Using an FFT-Phasor Algorithm. Biophysical Journal, 2020, 118, 2245-2257.	0.2	7
11	Structure and Dynamics of the Telomeric Nucleosome and Chromatin. Biophysical Journal, 2019, 116, 71a.	0.2	1
12	Overcoming chromatin barriers. ELife, 2019, 8, .	2.8	1
13	Linker DNA Length Defines the Structure of Chromatin Fibers. Biophysical Journal, 2018, 114, 256a.	0.2	0
14	Structure and Function of Archaeal Histones. Biophysical Journal, 2018, 114, 446a.	0.2	0
15	Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force. Biophysical Journal, 2018, 115, 1848-1859.	0.2	19
16	Two Photon Excitation Spectroscopy of Gold Nanorods for Bio-Sensing. Biophysical Journal, 2018, 114, 169a.	0.2	0
17	Probing Chromatin Structure with Magnetic Tweezers. Methods in Molecular Biology, 2018, 1814, 297-323.	0.4	17
18	Unraveling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers. Methods in Molecular Biology, 2018, 1837, 317-349.	0.4	10

#	Article	IF	CITATIONS
19	Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. Molecular Plant, 2017, 10, 1258-1273.	3.9	169
20	Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding. Journal of Biological Chemistry, 2017, 292, 17506-17513.	1.6	33
21	Toehold-enhanced LNA probes for selective pull down and single-molecule analysis of native chromatin. Scientific Reports, 2017, 7, 16721.	1.6	11
22	Accuracy of the detection of binding events using 3D single particle tracking. BMC Biophysics, 2017, 10, 3.	4.4	2
23	Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach. PLoS ONE, 2016, 11, e0156905.	1.1	43
24	Unravelling the Role of Linker Histone H1 and the H4-Tail in Chromatin (Un-)Folding. Biophysical Journal, 2016, 110, 68a.	0.2	0
25	A Novel Method for Multiplexed Nanometric Bead Tracking. Biophysical Journal, 2016, 110, 516a-517a.	0.2	Ο
26	Tracking Gold Nanorods in Live Cells. Biophysical Journal, 2016, 110, 485a.	0.2	0
27	Nucleosome dynamics: Sequence matters. Advances in Colloid and Interface Science, 2016, 232, 101-113.	7.0	61
28	spFRET reveals changes in nucleosome breathing by neighboring nucleosomes. Journal of Physics Condensed Matter, 2015, 27, 064103.	0.7	17
29	Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Research, 2015, 43, 3578-3590.	6.5	86
30	Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Research, 2014, 42, 4922-4933.	6.5	34
31	Coexistence of Twisted, Plectonemic, and Melted DNA in Small Topological Domains. Biophysical Journal, 2014, 106, 1174-1181.	0.2	36
32	Parallel Single-Molecule Excitation Spectroscopy of Gold Nanorods. Biophysical Journal, 2014, 106, 196a.	0.2	0
33	Interactions and Stacking in Ordered Mononucleosomes and Folded Chromatin: Effects of Histone Tail Modifications. Biophysical Journal, 2014, 106, 74a.	0.2	Ο
34	Quantitative Analysis of Single-Molecule Force Spectroscopy Data on Chromatin Fibers. Biophysical Journal, 2014, 106, 451a.	0.2	0
35	Nucleosome Conformation and the Higher Order Structure of Chromatin: spFRET Experiments on (Di)Nucleosomes. Biophysical Journal, 2013, 104, 39a.	0.2	0
36	Thermodynamics and Kinetics of Stretched, Plectonemic and Melted DNA. Biophysical Journal, 2013, 104, 28a-29a.	0.2	0

#	Article	IF	CITATIONS
37	Unraveling the Higher Order Structure of Chromatin using Single Molecule Force Spectroscopy. Biophysical Journal, 2013, 104, 13a.	0.2	0
38	Parallel Nanometric 3D Tracking of Intracellular Gold Nanorods Using Multifocal Two-Photon Microscopy. Nano Letters, 2013, 13, 980-986.	4.5	57
39	Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Research, 2013, 41, 196-205.	6.5	39
40	Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2514-22.	3.3	70
41	Single Molecule Force Spectroscopy Reveals a Left Handed Helical Folding for the 30 nm Chromatin Fiber. Biophysical Journal, 2012, 102, 481a-482a.	0.2	Ο
42	Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.	1.2	113
43	Engineering Mononucleosomes for Single-Pair FRET Experiments. Methods in Molecular Biology, 2011, 749, 291-303.	0.4	0
44	Unraveling Chromatin Structure Using Magnetic Tweezers. Biophysical Journal, 2010, 98, 207a.	0.2	0
45	A Multifocal Two-Photon Microscopy Setup for Parallel 3D Tracking of Gold Nanorods. Biophysical Journal, 2010, 98, 178a.	0.2	1
46	Single-pair FRET experiments on nucleosome conformational dynamics. Biochimie, 2010, 92, 1729-1740.	1.3	69
47	Introduction "DNA and chromosomes: Physical and biological approaches― Biochimie, 2010, 92, v-vi.	1.3	0
48	Regulation of Nucleosome Conformational Dynamics by Post-Translational Histone Modifications Studied with Single-Pair FRET. Biophysical Journal, 2010, 98, 475a.	0.2	2
49	Quantification of Nucleosome Stacking in Single 30 nm Chromatin Fibers. Biophysical Journal, 2010, 98, 474a-475a.	0.2	Ο
50	Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence. PLoS ONE, 2009, 4, e6345.	1.1	40
51	10 Years of Tension on Chromatin: Results from Single Molecule Force Spectroscopy. Current Pharmaceutical Biotechnology, 2009, 10, 474-485.	0.9	58
52	Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucleic Acids Research, 2009, 37, 1962-1972.	6.5	25
53	Nucleosomes can invade DNA territories occupied by their neighbors. Nature Structural and Molecular Biology, 2009, 16, 151-158.	3.6	95
54	Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nature Structural and Molecular Biology, 2009, 16, 534-540.	3.6	230

#	Article	IF	CITATIONS
55	A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation. Molecular Cell, 2009, 36, 153-163.	4.5	453
56	Nucleosome Stacking Defines The Structural And Mechanical Properites Of Chromatin Fibers. Biophysical Journal, 2009, 96, 35a.	0.2	0
57	Effect of Histone Acetylation on Nucleosome Dynamics Revealed by spFRET Microscopy. Biophysical Journal, 2009, 96, 55a.	0.2	Ο
58	Hidden Markov Analysis of Nucleosome Unwrapping Under Force. Biophysical Journal, 2009, 96, 3708-3715.	0.2	62
59	spFRET Using Alternating Excitation and FCS Reveals Progressive DNA Unwrapping in Nucleosomes. Biophysical Journal, 2009, 97, 195-204.	0.2	108
60	Single-Molecule Microscopy Reveals Membrane Microdomain Organization of Cells in a Living Vertebrate. Biophysical Journal, 2009, 97, 1206-1214.	0.2	53
61	Nucleosome Immobilization Strategies for Singleâ€Pair FRET Microscopy. ChemPhysChem, 2008, 9, 2002-2009.	1.0	23
62	Subpiconewton Dynamic Force Spectroscopy Using Magnetic Tweezers. Biophysical Journal, 2008, 94, 2343-2348.	0.2	65
63	Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics. Journal of Fluorescence, 2007, 17, 785-795.	1.3	105
64	Dynamics of initiation, termination and reinitiation of DNA translocation by the motor proteinEcoR124I. EMBO Journal, 2005, 24, 4188-4197.	3.5	33
65	Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic Acids Research, 2005, 33, 3292-3302.	6.5	116
66	Torque-limited RecA polymerization on dsDNA. Nucleic Acids Research, 2005, 33, 2099-2105.	6.5	37
67	Unraveling Bacteriorhodopsin. Biophysical Journal, 2005, 88, 763-764.	0.2	2
68	Dual architectural roles of HU: Formation of flexible hinges and rigid filaments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6969-6974.	3.3	272
69	Initiation of translocation by Type I restriction-modification enzymes is associated with a short DNA extrusion. Nucleic Acids Research, 2004, 32, 6540-6547.	6.5	30
70	Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nature Structural and Molecular Biology, 2004, 11, 838-843.	3.6	111
71	The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7581-7586.	3.3	82
72	Human Rad50/Mre11 Is a Flexible Complex that Can Tether DNA Ends. Molecular Cell, 2001, 8, 1129-1135.	4.5	437

#	Article	IF	CITATIONS
73	Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Applied Physics Letters, 2001, 79, 3881-3883.	1.5	419
74	DNA bending by photolyase in specific and non-specific complexes studied by atomic force microscopy. Nucleic Acids Research, 1999, 27, 3875-3880.	6.5	42
75	Optimization of adhesion mode atomic force microscopy resolves individual molecules in topography and adhesion. Ultramicroscopy, 1999, 80, 133-144.	0.8	11
76	Mapping Electrostatic Forces Using Higher Harmonics Tapping Mode Atomic Force Microscopy in Liquid. Langmuir, 1999, 15, 7101-7107.	1.6	39
77	High Speed Atomic Force Microscopy of Biomolecules by Image Tracking. Biophysical Journal, 1999, 77, 2295-2303.	0.2	34
78	Near-field optical microscopy for DNA studies at the single molecular level. Bioimaging, 1998, 6, 43-53.	1.8	48
79	Direct Visualization of Dynamic Protein-DNA Interactions with a Dedicated Atomic Force Microscope. Biophysical Journal, 1998, 74, 2840-2849.	0.2	96
80	Displacement imaging in porous media using the line scan NMR technique. Geoderma, 1997, 80, 405-416.	2.3	14
81	Height anomalies in tapping mode atomic force microscopy in air caused by adhesion. Ultramicroscopy, 1997, 69, 117-127.	0.8	136
82	Bending moduli and spontaneous curvature in one-phase microemulsion systems. A molecular approach. Faraday Discussions, 1996, 104, 317.	1.6	6
83	Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts. Protoplasma, 1996, 194, 29-39.	1.0	19