Gilmar PatrocÃ-nio Thim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/674660/publications.pdf

Version: 2024-02-01

86 papers

2,619 citations

172457 29 h-index 214800 47 g-index

86 all docs

86 docs citations

86 times ranked 3025 citing authors

#	Article	IF	CITATIONS
1	Resorcinol-based carbon xerogel/ZnO composite for solar-light-induced photodegradation of sulfamerazine. Optical Materials, 2022, 128, 112470.	3.6	3
2	<scp>PCL</scp> / <scp>βâ€AgVO₃</scp> nanocomposites obtained by solvent casting as potential antimicrobial biomaterials. Journal of Applied Polymer Science, 2021, 138, 50130.	2.6	11
3	Microstructure and mechanical properties of fully sintered zirconia glazed with an experimental glass. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104093.	3.1	11
4	Aluminaâ€ŧoughened zirconia for dental applications: Physicochemical, mechanical, optical, and residual stress characterization after artificial aging. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1135-1144.	3.4	12
5	Current advances in drug delivery of nanoparticles for respiratory disease treatment. Journal of Materials Chemistry B, 2021, 9, 1745-1761.	5.8	19
6	AgVO3 nanorods silanized with \hat{I}^3 -MPS: An alternative for effective dispersion of AgVO3 in dental acrylic resins improving the mechanical properties. Applied Surface Science, 2021, 543, 148830.	6.1	11
7	Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124034.	4.7	44
8	Degradation kinetics of high-translucency dental zirconias: Mechanical properties and in-depth analysis of phase transformation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103482.	3.1	19
9	α-wollastonite crystallization at low temperature. Ceramics International, 2020, 46, 6575-6580.	4.8	18
10	Evaluation of colloidal and polymeric routes in sol-gel synthesis of a bioactive glass-ceramic derived from 45S5 bioglass. Ceramics International, 2020, 46, 20264-20271.	4.8	23
11	Zinc oxide/carbon xerogel composites for photocatalytic applications developed through acidic and alkaline synthesis routes: structural, morphological, and photocatalytic evaluations. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	3
12	A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1869-1893.	3.5	16
13	Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method. Journal of Composites Science, 2020, 4, 52.	3.0	3
14	Facile preparation of Bi-doped ZnO/ \hat{l}^2 -Bi2O3/Carbon xerogel composites towards visible-light photocatalytic applications: Effect of calcination temperature and bismuth content. Ceramics International, 2020, 46, 23895-23909.	4.8	20
15	Influence of CNT pre-dispersion into PHBV/CNT nanocomposites and evaluation of morphological, mechanical and crystallographic features. Materials Research Express, 2019, 6, 105375.	1.6	5
16	Synthesis of \hat{l}^2 -AgVO3 nanowires by hydrothermal and precipitation routes: a comparative study. SN Applied Sciences, 2019, 1, 1.	2.9	8
17	Enhanced water uptake of PHBV scaffolds with functionalized cellulose nanocrystals. Polymer Testing, 2019, 79, 106079.	4.8	22
18	Covalently \hat{l}^3 -aminobutyric acid-functionalized carbon nanotubes: improved compatibility with PHBV matrix. SN Applied Sciences, 2019, 1, 1.	2.9	6

#	Article	lF	Citations
19	Recent advances in the use of carbon nanotubes as smart biomaterials. Journal of Materials Chemistry B, 2019, 7, 1343-1360.	5.8	81
20	Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Advances in Materials Science and Engineering, 2019, 2019, 1-21.	1.8	100
21	Non-Isothermal Crystallization Kinetic of Polyethylene/Carbon Nanotubes Nanocomposites Using an Isoconversional Method. Journal of Composites Science, 2019, 3, 21.	3.0	14
22	Synthesis of novel ZnO/carbon xerogel composites: Effect of carbon content and calcination temperature on their structural and photocatalytic properties. Ceramics International, 2019, 45, 3657-3667.	4.8	30
23	Effect of Nb/C ratio in the morphological, structural, optical and photocatalytic properties of novel and inexpensive Nb2O5/carbon xerogel composites. Ceramics International, 2018, 44, 6645-6652.	4.8	35
24	TiO2Carbon composite using coconut waste as carbon source: Sonocatalysis and adsorption evaluation. Surfaces and Interfaces, 2018, 12, 124-134.	3.0	8
25	Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye concentration, and radiation source. Materials Chemistry and Physics, 2018, 214, 95-106.	4.0	76
26	Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polymer Composites, 2018, 39, E9.	4.6	88
27	Novel synthetic route for low-cost carbon-modified TiO2 with enhanced visible light photocatalytic activity: carbon content and calcination effects. Journal of Sol-Gel Science and Technology, 2018, 87, 380-390.	2.4	16
28	Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. Journal of Materials Science, 2018, 53, 14311-14327.	3.7	132
29	Preparation, characterization, and application of low-cost açaÃ-seed-based activated carbon for phenol adsorption. International Journal of Environmental Research, 2018, 12, 755-764.	2.3	23
30	The sonication effect on CNT-epoxy composites finally clarified. Polymer Composites, 2017, 38, 1964-1973.	4.6	16
31	Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Applied Surface Science, 2017, 410, 267-277.	6.1	81
32	How Do CNT affect the branch and crosslink reactions in CNT-epoxy. Materials Research Express, 2017, 4, 105101.	1.6	21
33	A novel synthesis route of titanium dioxide with (NH4)0.3TiO1.1F2.1 as by-product. Ceramics International, 2017, 43, 13677-13682.	4.8	3
34	Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 531-539.	2.1	41
35	Understanding the water uptake in F-161 glass-epoxy composites using the techniques of luminescence spectroscopy and FT-NIR. Polimeros, 2017, 27, 171-182.	0.7	10
36	CNT AND GO EPOXY NANOCOMPOSITES- AN EXPERIMENTAL COMPARISON OF MECHANICAL PROPERTIES. , 2017, , .		O

#	Article	IF	Citations
37	SYNTHESIS AND CHARACTERIZATION OF CNT-O 2 THIN FILMS AS DOUBLE LAYER CAPACITOR ELECTRODE. , 2017, , .		O
38	Energetic and electronic properties in a multilayered ZnO graphene-like nanostructure. Materials Research, 2016, 19, 497-504.	1.3	6
39	Carbon and TiO 2 synergistic effect on methylene blue adsorption. Materials Chemistry and Physics, 2016, 177, 330-338.	4.0	31
40	Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Applied Surface Science, 2016, 389, 921-929.	6.1	76
41	Functionalizing Graphene and Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.4	32
42	Functionalization of Carbon Nanotube and Applications. SpringerBriefs in Applied Sciences and Technology, 2016, , 31-61.	0.4	15
43	Functionalization of Graphene and Applications. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-29.	0.4	12
44	Adsorbed water on iron surface by molecular dynamics. Applied Surface Science, 2016, 362, 70-78.	6.1	14
45	Functionalization of Multi-Walled Carbon Nanotube and Mechanical Property of Epoxy-Based Nanocomposite. Journal of Aerospace Technology and Management, 2015, 7, 289-293.	0.3	52
46	Sonocatalytic Degradation of Methylene Blue in the Presence of TiO ₂ Doped Carbon Nanostructuresâ€"Catalytic and Adsorption Comparison by Different Carbon Forms. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 725-733.	2.1	13
47	Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceramics International, 2015, 41, 7302-7311.	4.8	118
48	Cr total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC). Journal of Environmental Chemical Engineering, 2015, 3, 725-733.	6.7	26
49	Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Applied Surface Science, 2015, 357, 2154-2159.	6.1	61
50	Anomalous behavior of thermal stability of amino-carbon nanotube–epoxy nanocomposite. Journal of Composite Materials, 2015, 49, 3067-3073.	2.4	9
51	Mullite crystallization using fully hydrolyzed silica sol: the gelation temperature influence. Journal of Sol-Gel Science and Technology, 2014, 72, 219-226.	2.4	3
52	Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: A comprehensive review. Polymer Engineering and Science, 2014, 54, 2461-2469.	3.1	71
53	Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. Journal of Applied Polymer Science, 2013, 127, 544-553.	2.6	47
54	Activated carbon derived from macadamia nut shells: an effective adsorbent for phenol removal. Journal of Porous Materials, 2013, 20, 619-627.	2.6	40

#	Article	IF	Citations
55	Preparation of nodular carbon cryogel from simple and inexpensive polycondensation reaction of commercial modified black wattle tannin. Journal of Sol-Gel Science and Technology, 2013, 67, 519-526.	2.4	9
56	Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement. Journal of Aerospace Technology and Management, 2013, 5, 431-438.	0.3	1
57	Phenol removal from aqueous solution by carbon xerogel. Journal of Sol-Gel Science and Technology, 2012, 63, 202-210.	2.4	30
58	Adsorption of phosphate from aqueous solution by hydrous zirconium oxide. Environmental Technology (United Kingdom), 2012, 33, 1345-1351.	2.2	73
59	Effect of ethylene glycol on the mullite crystallization. Journal of the European Ceramic Society, 2012, 32, 835-842.	5.7	22
60	Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, 2011, 174, 49-57.	12.7	140
61	Study of curing process of glass fiber and epoxy resin composite by FT-NIR, photoacoustic spectroscopy and luminescence spectroscopy. Journal of Materials Science, 2011, 46, 1814-1823.	3.7	30
62	Urea effect on the mechanism of mullite crystallization. Journal of Materials Science, 2011, 46, 7384-7392.	3.7	5
63	Review of mullite synthesis routes by sol–gel method. Journal of Sol-Gel Science and Technology, 2010, 55, 111-125.	2.4	149
64	Thermal curing of glassâ€epoxy prepregs by luminescence spectroscopy. Journal of Applied Polymer Science, 2010, 117, 664-671.	2.6	14
65	A Lennard-Jones plus Coulomb potential for Al3+ ions in aqueous solutions. Journal of Chemical Physics, 2010, 132, 114509.	3.0	49
66	Effect of urea on the mullite crystallization. Journal of Non-Crystalline Solids, 2010, 356, 3013-3018.	3.1	17
67	The kinetic of mullite crystallization: Effect of water content. Journal of Non-Crystalline Solids, 2010, 356, 2980-2985.	3.1	21
68	Influence of cassava starch content and sintering temperature on the alumina consolidation technique. Journal of the European Ceramic Society, 2009, 29, 1587-1594.	5.7	37
69	Preparation of a reticulated ceramic using vegetal sponge as templating. Ceramics International, 2009, 35, 1575-1579.	4.8	20
70	Kinetics of cordierite crystallization from diphasic gels. Journal of Sol-Gel Science and Technology, 2008, 47, 140-147.	2.4	18
71	Kinetic study of \hat{l}_{\pm} -BZN crystallization obtained from chemical method. Materials Research, 2008, 11, 289-293.	1.3	3
72	Effect of urea on lead zirconate titanateâ€"Pb(Zr0.52Ti0.48)O3â€"nanopowders synthesized by the Pechini method. Journal of the European Ceramic Society, 2005, 25, 743-748.	5.7	45

#	Article	IF	CITATIONS
73	Mullite crystallization mechanism obtained from kinetic parameters determination for seeded and non-seeded gel. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 169-173.	3.5	14
74	Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy. Thin Solid Films, 2004, 457, 307-312.	1.8	20
75	A chemical route for the synthesis of cubic bismuth zinc niobate pyrochlore nanopowders. Journal of Solid State Chemistry, 2004, 177, 4546-4551.	2.9	37
76	Preparation and optical properties of trivalent europium doped into cordierite using the sol–gel process. Journal of Solid State Chemistry, 2003, 171, 375-381.	2.9	38
77	Crystallization kinetics of orthorhombic mullite from diphasic gels. Journal of Non-Crystalline Solids, 2002, 304, 19-24.	3.1	36
78	Organic acids effect on crystallization kinetics of cordierite obtained by diphasic gel. Journal of Non-Crystalline Solids, 2002, 304, 31-35.	3.1	6
79	Experimental and Monte Carlo simulation: the role of urea in mullite synthesis. Journal of the European Ceramic Society, 2001, 21, 759-763.	5.7	11
80	Sol–gel silica film preparation from aqueous solutions for corrosion protection. Journal of Non-Crystalline Solids, 2000, 273, 124-128.	3.1	65
81	Citric acid effect on aqueous sol–gel cordierite synthesis. Journal of Non-Crystalline Solids, 2000, 273, 140-144.	3.1	22
82	Rotas de sÃntese e a homogeneidade dos precursores de mulita e cordierita. Quimica Nova, 1998, 21, 608.	0.3	6
83	Laser-induced formation of porous silicon. Applied Surface Science, 1995, 86, 398-404.	6.1	10
84	Photoelectrochemically Induced Copper Deposition On P-Silicon Electrodes From CuCN Solutions. , 1990, 1186, 131.		0
85	Synthesis of Graphene Oxide and Functionalized CNT Nanocomposites Based on Epoxy Resin. Journal of Aerospace Technology and Management, 0, 10 , .	0.3	15
86	Nanocomposites obtained by incorporation of silanized silver nanowires to improve mechanical properties and prevent fungal adhesion. Nano Select, 0, , .	3.7	1