Qingfeng Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6746548/publications.pdf

Version: 2024-02-01

		331670	361022
57	1,347	21	35
papers	citations	h-index	g-index
57	57	57	1322
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	First-principles study of electronic structure and optical properties of Er:Lu2O3. Journal of Rare Earths, 2021, 39, 453-459.	4.8	13
2	First-principles study on predicting the crystal structures, mechanical properties and electronic structures of HfCxN1-x. Journal of the European Ceramic Society, 2021, 41, 3037-3044.	5.7	7
3	Influence of sintering temperature and CVI time on mechanical properties of 3D-printed alumina ceramics. Materials Letters, 2021, 285, 129096.	2.6	14
4	Silica strengthened alumina ceramic cores prepared by 3D printing. Journal of the European Ceramic Society, 2021, 41, 2938-2947.	5.7	53
5	First-principles calculation of interfacial stability, energy, electronic properties, ideal tensile strength and fracture toughness of SiC/BN interface. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	8
6	Machine learning and a computational fluid dynamic approach to estimate phase composition of chemical vapor deposition boron carbide. Journal of Advanced Ceramics, 2021, 10, 537-550.	17.4	6
7	3D printed ceramic slurries with improved solid content through optimization of alumina powder and coupling agent. Journal of Manufacturing Processes, 2021, 64, 1206-1213.	5.9	12
8	The effect of sintering on the properties of calcium oxide promoted alumina-based ceramic cores via 3D printing. Materials Chemistry and Physics, 2021, 263, 124443.	4.0	10
9	Effect of zirconia content and particle size on the properties of 3Dâ€printed aluminaâ€based ceramic cores. Journal of the American Ceramic Society, 2021, 104, 6015-6028.	3.8	8
10	Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum. Journal of the European Ceramic Society, 2020, 40, 4825-4836.	5.7	70
11	Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Materials Characterization, 2020, 168, 110548.	4.4	40
12	Influence of grain boundary and grain size on the mechanical properties of polycrystalline ceramics: Grainâ€scale simulations. Journal of the American Ceramic Society, 2020, 103, 5900-5913.	3.8	37
13	Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane. Chinese Journal of Chemical Engineering, 2020, 28, 1733-1743.	3 . 5	8
14	Effect of sintering temperature in argon atmosphere on microstructure and properties of 3D printed alumina ceramic cores. Journal of Advanced Ceramics, 2020, 9, 220-231.	17.4	84
15	First-principles study of structure, mechanical and optical properties of La- and Sc-doped Y2O3. Journal of Rare Earths, 2019, 37, 879-885.	4.8	12
16	First-principles study of the electronic structure and optical properties of Eu2+–M (M = Mn2+, Mg2+,) Tj ETQc	10	T /Qverlock 10
17	First-principles study of elastic, electronic, and optical properties of \hat{l}_{\pm} -TeO2 under pressure. Journal of Alloys and Compounds, 2019, 776, 417-427.	5.5	5
18	Estimating thermal conductivities and elastic moduli of porous ceramics using a new microstructural parameter. Journal of the European Ceramic Society, 2019, 39, 647-651.	5.7	3

#	Article	IF	CITATIONS
19	First-principles calculation on the electronic structure and optical properties of Eu2+ doped Î ³ -AlON phosphor. Ceramics International, 2018, 44, 1461-1466.	4.8	9
20	Novel high-pressure calcium carbonates. Physical Review B, 2018, 98, .	3.2	32
21	First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties. RSC Advances, 2017, 7, 4697-4703.	3.6	45
22	Emergence of novel hydrogen chlorides under high pressure. Physical Chemistry Chemical Physics, 2017, 19, 8236-8242.	2.8	18
23	Structural, phonon, mechanical, optical, and thermodynamic properties of stable \hat{l}^2 -La2S3 from first-principles calculations. Journal of Rare Earths, 2017, 35, 271-279.	4.8	9
24	Emergence of Novel Polynitrogen Molecule-like Species, Covalent Chains, and Layers in Magnesium–Nitrogen Mg _{<i>x</i>} N _{<i>y</i>} Phases under High Pressure. Journal of Physical Chemistry C, 2017, 121, 11037-11046.	3.1	76
25	First-principles study of structural, mechanical, and thermodynamic properties of cubic Y2O3 under high pressure. Ceramics International, 2017, 43, 3346-3355.	4.8	32
26	Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 12299-12306.	2.8	53
27	Vibrational and dielectric properties of AlN: A first-principles study. Ceramics International, 2016, 42, 18828-18832.	4.8	8
28	Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches. Brazilian Journal of Physics, 2016, 46, 87-96.	1.4	2
29	Pressure-driven formation and stabilization of superconductive chromium hydrides. Scientific Reports, 2015, 5, 17764.	3.3	37
30	Formation of Stoichiometric CsFn Compounds. Scientific Reports, 2015, 5, 7875.	3.3	20
31	PCLab – A software with interactive graphical user interface for Monte Carlo and finite element analysis of microstructure-based layered composites. Advances in Engineering Software, 2015, 90, 53-62.	3.8	5
32	Decomposition reaction rate of BCl3–CH4–H2 in the gas phase. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	4
33	A Novel Phase of Li ₁₅ Si ₄ Synthesized under Pressure. Advanced Energy Materials, 2015, 5, 1500214.	19.5	14
34	Thermodynamic study on the chemical vapor deposition of boron nitride from the BCl3–NH3–H2 system. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	4
35	Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system. AIP Advances, 2014, 4, .	1.3	25
36	Thermodynamics investigation of the gas-phase reactions in the chemical vapor deposition of silicon borides with BCl3–SiCl4–H2 precursors. Structural Chemistry, 2014, 25, 1369-1384.	2.0	3

#	Article	IF	CITATIONS
37	Evolutionary search for new high- <i>k</i> dielectric materials: methodology and applications to hafnia-based oxides. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 76-84.	0.5	44
38	Monte Carlo simulation of polycrystalline microstructures and finite element stress analysis. Materials & Design, 2014, 55, 740-746.	5.1	18
39	Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure. Physical Review B, 2013, 88, .	3.2	51
40	Modeling of Pore Structure Evolution Between Bundles of Plain Woven Fabrics During Chemical Vapor Infiltration Process: The Influence of Preform Geometry. Journal of the American Ceramic Society, 2013, 96, 51-61.	3.8	10
41	Prediction of Permeability for Chemical Vapor Infiltration. Journal of the American Ceramic Society, 2013, 96, 2445-2453.	3.8	12
42	Reaction paths of BCl3Â+ÂCH4Â+ÂH2 in the chemical vapor deposition process. Structural Chemistry, 2012, 23, 1677-1692.	2.0	5
43	Thermodynamic Calculation of HfB2 Volatility Diagram. Journal of Phase Equilibria and Diffusion, 2011, 32, 422-427.	1.4	10
44	Simulated three-dimensional transient temperature field during aircraft braking for C/SiC composite brake disc. Materials & Design, 2011, 32, 2590-2595.	5.1	39
45	First-principles study of the structural, vibrational, phonon and thermodynamic properties of transition metal carbides TMC (, Zr and Hf). Solid State Communications, 2011, 151, 61-66.	1.9	36
46	Structural, elastic and electronic properties of transition metal carbides TMC (TM=Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Communications, 2011, 151, 602-606.	1.9	92
47	An investigation of the lowest reaction pathway of propeneÂ+ÂBCl3 decomposition in chemical vapor deposition process. Theoretical Chemistry Accounts, 2010, 127, 519-538.	1.4	9
48	Effect of Water on Oxidation Behavior of 3-D C/SiC Composites Coated with SiC/a-BCx/SiC Coatings. Advanced Composite Materials, 2010, 19, 185-196.	1.9	7
49	Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study. Computational Materials Science, 2010, 49, 814-819 Adsorption of atomic and molecular oxygen on 3C-SiC(111) and multimath xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.0	79

50

#	Article	IF	CITATIONS
55	Theoretical Investigation for the Activeâ€toâ€Passive Transition in the Oxidation of Silicon Carbide. Journal of the American Ceramic Society, 2008, 91, 1665-1673.	3.8	35
56	Numerical Simulation of Effect of Methyltrichlorosilane Flux on Isothermal Chemical Vapor Infiltration Process of C/SiC Composites. Journal of the American Ceramic Society, 2006, 89, 060623005134016-???.	3.8	6
57	A Dual-scale Model for Estimating the Ablation Rate of C/C Composite Nozzle. Applied Composite Materials, $0, \dots$	2.5	3