List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6746509/publications.pdf Version: 2024-02-01

ANNE POREDT

#	Article	IF	CITATIONS
1	From Mechanistic Studies on Artemisinin Derivatives to New Modular Antimalarial Drugs. Accounts of Chemical Research, 2002, 35, 167-174.	7.6	280
2	Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. Inorganic Chemistry, 1996, 35, 387-396.	1.9	222
3	Metal Ions in Alzheimer's Disease: A Key Role or Not?. Accounts of Chemical Research, 2019, 52, 2026-2035.	7.6	216
4	"Redox Tautomerism" in High-Valent Metal-oxo-aquo Complexes. Origin of the Oxygen Atom in Epoxidation Reactions Catalyzed by Water-Soluble Metalloporphyrins. Journal of the American Chemical Society, 1994, 116, 9375-9376.	6.6	183
5	Regulation of Copper and Iron Homeostasis by Metal Chelators: A Possible Chemotherapy for Alzheimer's Disease. Accounts of Chemical Research, 2015, 48, 1332-1339.	7.6	174
6	The antimalarial drug artemisinin alkylates heme in infected mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13676-13680.	3.3	167
7	Is alkylation the main mechanism of action of the antimalarial drug artemisinin?. Chemical Society Reviews, 1998, 27, 273.	18.7	154
8	Heme as Trigger and Target for Trioxane-Containing Antimalarial Drugs. Accounts of Chemical Research, 2010, 43, 1444-1451.	7.6	152
9	Trioxaquines Are New Antimalarial Agents Active on All Erythrocytic Forms, Including Gametocytes. Antimicrobial Agents and Chemotherapy, 2007, 51, 1463-1472.	1.4	145
10	Preparation and Antimalarial Activities of "Trioxaquinesâ€ , New Modular Molecules with a Trioxane Skeleton Linked to a 4-Aminoquinoline. ChemBioChem, 2000, 1, 281-283.	1.3	144
11	Characterization of the Alkylation Product of Heme by the Antimalarial Drug Artemisinin. Angewandte Chemie - International Edition, 2001, 40, 1954-1957.	7.2	135
12	Intramolecular kinetic isotope effects in alkane hydroxylations catalyzed by manganese and iron porphyrin complexes. Journal of the American Chemical Society, 1993, 115, 7293-7299.	6.6	134
13	Characterization of the First Covalent Adduct between Artemisinin and a Heme Model. Journal of the American Chemical Society, 1997, 119, 5968-5969.	6.6	127
14	Synthesis and Antimalarial Activity of Trioxaquine Derivatives. Chemistry - A European Journal, 2004, 10, 1625-1636.	1.7	127
15	Schistosomiasis Chemotherapy. Angewandte Chemie - International Edition, 2013, 52, 7936-7956.	7.2	114
16	Alkylation of heme by the antimalarial drug artemisinin. Chemical Communications, 2002, , 414-415.	2.2	110
17	Highly Selective Bromination of Tetramesitylporphyrin: An Easy Access to Robust Metalloporphyrins, M-Br8TMP and M-Br8TMPS. Examples of application in catalytic oxygenation and oxidation reactions Tetrahedron Letters, 1990, 31, 1991-1994.	0.7	101
18	Trioxaferroquines as New Hybrid Antimalarial Drugs. Journal of Medicinal Chemistry, 2010, 53, 4103-4109.	2.9	101

#	Article	IF	CITATIONS
19	Catalase modeling with metalloporphyrin complexes having an oxygen ligand in a proximal position. Comparison with complexes containing a proximal nitrogen. Inorganic Chemistry, 1991, 30, 706-711.	1.9	93
20	How to Define a Nanozyme. ACS Nano, 2022, 16, 6956-6959.	7.3	76
21	From classical antimalarial drugs to new compounds based on the mechanism of action of artemisinin. Pure and Applied Chemistry, 2001, 73, 1173-1188.	0.9	74
22	Alkylating Properties of Antimalarial Artemisinin Derivatives and Synthetic Trioxanes when Activated by a Reduced Heme Model. Chemistry - A European Journal, 1998, 4, 1287-1296.	1.7	70
23	In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates. Antimicrobial Agents and Chemotherapy, 2001, 45, 1886-1888.	1.4	65
24	Alkylating Capacity and Reaction Products of Antimalarial Trioxanes after Activation by a Heme Model. Journal of Organic Chemistry, 2002, 67, 609-619.	1.7	65
25	Characterization of New Specific Copper Chelators as Potential Drugs for the Treatment of Alzheimer's Disease. Chemistry - A European Journal, 2014, 20, 6771-6785.	1.7	57
26	The key role of heme to trigger the antimalarial activity of trioxanes. Coordination Chemistry Reviews, 2005, 249, 1927-1936.	9.5	47
27	C10-Modified Artemisinin Derivatives: Efficient Heme-Alkylating Agents. Angewandte Chemie - International Edition, 2005, 44, 2060-2063.	7.2	45
28	In Vitro Activities of Trioxaquines against <i>Schistosoma mansoni</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 4903-4906.	1.4	45
29	Kinetic investigations of oxidative degradation of aromatic pollutant 2,4,6-trichlorophenol by an iron-porphyrin complex, a model of ligninase. Journal of Molecular Catalysis A, 1996, 113, 45-49.	4.8	42
30	Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases. European Journal of Inorganic Chemistry, 2017, 2017, 600-608.	1.0	41
31	Magnetite Fe ₃ O ₄ Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angewandte Chemie - International Edition, 2018, 57, 14758-14763.	7.2	41
32	In Vitro and In Vivo Potentiation of Artemisinin and Synthetic Endoperoxide Antimalarial Drugs by Metalloporphyrins. Antimicrobial Agents and Chemotherapy, 2000, 44, 2836-2841.	1.4	40
33	Synthesis of "Trioxaquantelâ€ [®] Derivatives as Potential New Antischistosomal Drugs. European Journal of Organic Chemistry, 2008, 2008, 895-913.	1.2	40
34	The Antimalarial Trioxaquine DU1301 Alkylates Heme in Malaria-Infected Mice. Antimicrobial Agents and Chemotherapy, 2008, 52, 2966-2969.	1.4	40
35	Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2012, 6, e1474.	1.3	38
36	Preparation of Tetradentate Copper Chelators as Potential Antiâ€Alzheimer Agents. ChemMedChem, 2018, 13, 684-704.	1.6	38

#	Article	IF	CITATIONS
37	NMR characterization of covalent adducts obtained by alkylation of heme with the antimalarial drug artemisinin. Inorganica Chimica Acta, 2002, 339, 488-496.	1.2	37
38	Alkylation of human hemoglobin A0by the antimalarial drug artemisinin. FEBS Letters, 2004, 556, 245-248.	1.3	37
39	Characterization of the Main Radical and Products Resulting from a Reductive Activation of the Antimalarial Arteflene (Ro 42â^'1611). Journal of Organic Chemistry, 1999, 64, 6776-6781.	1.7	36
40	Complexation of copper(II) with a macrocyclic peptide containing histidyl residues: novel observation of NMR spectra of paramagnetic copper(II) compounds. Inorganic Chemistry, 1986, 25, 2760-2765.	1.9	34
41	Docking Studies of Structurally Diverse Antimalarial Drugs Targeting PfATP6: No Correlation between inâ€silico Binding Affinity and inâ€vitro Antimalarial Activity ChemMedChem, 2009, 4, 1469-1479.	1.6	34
42	Heme Alkylation by Artesunic Acid and Trioxaquine DU1301, Two Antimalarial Trioxanes. ChemBioChem, 2005, 6, 653-658.	1.3	32
43	Aspects of metalloporphyrin-catalyzed oxygenation of hydrocarbons with anionic single oxygen donors, NaOCl and KHSO5. Journal of Molecular Catalysis, 1987, 41, 185-195.	1.2	30
44	Synthesis of water-soluble ruthenium porphyrins as DNA cleavers and potential cytotoxic agents. Journal of Biological Inorganic Chemistry, 1997, 2, 427-432.	1.1	28
45	Sulfonated and acetamidosulfonylated tetraarylporphyrins as biomimetic oxidation catalysts under aqueous conditions. Inorganica Chimica Acta, 1998, 272, 228-234.	1.2	27
46	Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. Organic and Biomolecular Chemistry, 2011, 9, 4098.	1.5	27
47	Transfer of Copper from an Amyloid to a Natural Copper arrier Peptide with a Specific Mediating Ligand. Chemistry - A European Journal, 2015, 21, 17085-17090.	1.7	26
48	TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chemical Neuroscience, 2021, 12, 140-149.	1.7	26
49	Brominated and chlorinated manganese chiral Schiff base complexes as epoxidation catalysts. Journal of Molecular Catalysis, 1993, 85, 13-19.	1.2	25
50	Metalloporphyrin-Catalyzed Oxidation of Sunitinib and Pazopanib, Two Anticancer Tyrosine Kinase Inhibitors: Evidence for New Potentially Toxic Metabolites. Journal of Medicinal Chemistry, 2018, 61, 7849-7860.	2.9	25
51	8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE. , 2019, 19, 203-230.		24
52	Enantioselective epoxidation of olefins by single-oxygen atom donors catalyzed by managanese-glycoconjugated porphyrins. Journal of Molecular Catalysis A, 1996, 113, 23-34.	4.8	23
53	Alkylating properties of synthetic trioxanes related to artemisinin. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1265-1270.	1.3	23
54	Trioxaquine PA1259 Alkylates Heme in the Blood-Feeding Parasite Schistosoma mansoni. Antimicrobial Agents and Chemotherapy, 2011, 55, 2403-2405.	1.4	20

#	Article	IF	CITATIONS
55	Potentiation of Artemisinin Activity against Chloroquine-Resistant <i>Plasmodium falciparum</i> Strains by Using Heme Models. Antimicrobial Agents and Chemotherapy, 1999, 43, 2555-2558.	1.4	20
56	N ₄ â€Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copperâ€Amyloidâ€Î² _{1–16} . Chemistry - A European Journal, 2018, 24, 7825-7829.	1.7	19
57	Structure–Activity Relationships of Synthetic Tricyclic Trioxanes Related to Artemisinin: The Unexpected Alkylative Property of a 3-(Methoxymethyl) Analog. European Journal of Organic Chemistry, 1999, 1999, 1935-1938.	1.2	18
58	Heme alkylation by artemisinin and trioxaquines. Journal of Physical Organic Chemistry, 2006, 19, 562-569.	0.9	18
59	The Antimalarial Artemisone is an Efficient Heme Alkylating Agent. European Journal of Inorganic Chemistry, 2008, 2008, 2133-2135.	1.0	18
60	Activity of trioxaquine PA1259 in mice infected by Schistosoma mansoni. Comptes Rendus Chimie, 2012, 15, 75-78.	0.2	18
61	The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids. ChemistryOpen, 2015, 4, 27-31.	0.9	17
62	Involvement of Pazopanib and Sunitinib Aldehyde Reactive Metabolites in Toxicity and Drug–Drug Interactions <i>in Vitro</i> and in Patient Samples. Chemical Research in Toxicology, 2020, 33, 181-190.	1.7	16
63	Alkylation of manganese(II) tetraphenylporphyrin by antimalarial fluorinated artemisinin derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1059-1062.	1.0	15
64	CONVENIENT METHOD FOR THE PREPARATION OF 2′-DEOXYRIBOSYLUREA BY THYMIDINE OXIDATION AND NMR STUDY OF BOTH ANOMERS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1463-1471.	0.4	14
65	Correlation between Plasmodium yoelii nigeriensis Susceptibility to Artemisinin and Alkylation of Heme by the Drug. Antimicrobial Agents and Chemotherapy, 2013, 57, 3998-4000.	1.4	14
66	Endoperoxide-based compounds: cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism. Journal of Antimicrobial Chemotherapy, 2018, 73, 395-403.	1.3	14
67	Alkylation of Microperoxidase-11 by the Antimalarial Drug Artemisinin. ChemBioChem, 2002, 3, 1147-1149.	1.3	13
68	Synthesis and stereochemical study of a trioxaquine prepared from cis-bicyclo〚3.3.0〛octane-3,7-dione. Comptes Rendus Chimie, 2002, 5, 297-302.	0.2	12
69	Magnetite Fe ₃ O ₄ Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angewandte Chemie, 2018, 130, 14974-14979.	1.6	11
70	Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 85-89.	0.1	10
71	Recent Advances in Malaria Chemotherapy. Journal of the Chinese Chemical Society, 2002, 49, 301-310.	0.8	10
72	Synthesis and biological evaluation of a new trioxaquine containing a trioxane moiety obtained by halogenocyclisation of a hemiperoxyacetal. Comptes Rendus Chimie, 2003, 6, 153-160.	0.2	10

#	Article	IF	CITATIONS
73	Synthesis and antimalarial activity of 2-methoxyprop-2-yl peroxides derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 75-77.	1.0	9
74	Alkylation of manganese(ii) tetraphenylporphyrin by a synthetic antimalarial trioxane. Organic and Biomolecular Chemistry, 2003, 1, 2859.	1.5	9
75	Alkylating ability of artemisinin after Cu(I)-induced activation. Journal of Biological Inorganic Chemistry, 2009, 14, 601-610.	1.1	9
76	Why Is Tetradentate Coordination Essential for Potential Copper Homeostasis Regulators in Alzheimer's Disease?. European Journal of Inorganic Chemistry, 2019, 2019, 4712-4718.	1.0	9
77	Alkoxyamines Designed as Potential Drugs against Plasmodium and Schistosoma Parasites. Molecules, 2020, 25, 3838.	1.7	9
78	Catecholâ€Based Ligands as Potential Metal Chelators Inhibiting Redox Activity in Alzheimer's Disease. European Journal of Inorganic Chemistry, 2017, 2017, 3198-3204.	1.0	8
79	ls iron associated with amyloid involved in the oxidative stress of Alzheimer's disease?. Comptes Rendus Chimie, 2017, 20, 987-989.	0.2	8
80	Asymmetric Biomimetic Oxidations. , 2000, , 543-562.		7
81	Metalloporphyrin-catalyzed hydroxylation of the N,N-dimethylamide function of the drug molecule SSR180575 to a stable N-methyl-N-carbinolamide. Comptes Rendus Chimie, 2013, 16, 1002-1007.	0.2	7
82	The TDMQ Regulators of Copper Homeostasis Do Not Disturb the Activities of Cu,Zn-SOD, Tyrosinase, or the Colll Cofactor Vitamin B12. European Journal of Inorganic Chemistry, 2019, 2019, 1384-1388.	1.0	7
83	Interaction of iron(II)-heme and artemisinin with a peptide mimic of Plasmodium falciparum HRP-II. Journal of Inorganic Biochemistry, 2007, 101, 1739-1747.	1.5	6
84	Comment on "Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe ₂ O ₄ (M = Fe, Ni, and Mn) Nanoparticles― Journal of Physical Chemistry C, 2019, 123, 28513-28514.	1.5	6
85	2. SMALL MOLECULES: THE PAST OR THE FUTURE IN DRUG INNOVATION?. , 2019, , 17-48.		5
86	Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules, 2021, 26, 5711.	1.7	5
87	Synthesis and Antimalarial Activities of New Hybrid Atokel Molecules. ChemistryOpen, 2022, 11, e202200064.	0.9	4
88	Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer's disease. Comptes Rendus Chimie, 2018, 21, 475-483.	0.2	3
89	Interaction of artemisinin (qinghaosu) with the tetraphenylporphyrinato-manganese(II) complex. Comptes Rendus De L'Académie Des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy, 1997, 324, 59-66.	0.1	2
90	Synthesis and characterization of 8-aminoquinolines, substituted by electron donating groups, as high-affinity copper chelators for the treatment of Alzheimer's disease. Comptes Rendus Chimie, 2019, 22, 419-427.	0.2	2

#	Article	IF	CITATIONS
91	"Redox Tautomerism" in High-Valent Metal-oxo-aquo Complexes. Origin of the Oxygen Atom in Epoxidation Reactions Catalyzed by Water-Soluble Metalloporphyrins. [Erratum to document cited in CA122:105083]. Journal of the American Chemical Society, 1994, 116, 12135-12135.	6.6	1
92	Synthesis and characterization of manganese(III) complexes of a chiral disulfonamide ligand based on trans-1,2-diaminocyclohexane. Polyhedron, 1997, 16, 2365-2368.	1.0	1
93	X-Ray diffraction structure of Cu(II) and Zn(II) complexes of 8-aminoquinoline derivatives (TDMQ), related to the activity of these chelators as potential drugs against Alzheimer's disease. Journal of Molecular Structure, 2022, 1251, 132078.	1.8	1
94	Origin of the oxygen atom in metalloporphyrin-catalyzed epoxidations with LiOCl as oxidant. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 771-775.	0.1	0
95	C10-Modified Artemisinin Derivatives: Efficient Heme-Alkylating Agents. ChemInform, 2005, 36, no.	0.1	0
96	Heme as Trigger and Target of the Antimalarial Peroxide Artemisinin. ACS Symposium Series, 2005, , 281-294.	0.5	0
97	Inside Cover: Docking Studies of Structurally Diverse Antimalarial Drugs Targeting PfATP6: No Correlation between inâ€silico Binding Affinity and inâ€vitro Antimalarial Activity. (ChemMedChem) Tj ETQq1 	11067843	14∂rgBT /Ov
98	Frontispiece: N4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-β1-16. Chemistry - A European Journal, 2018, 24, .	1.7	0