
Xiaochao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6746424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of CO ₂ Capture on Biomass-Based Carbon from Black Locust by KOH Activation and Ammonia Modification. Energy & Fuels, 2016, 30, 4181-4190.	2.5	181
2	First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals. Physica B: Condensed Matter, 2012, 407, 3364-3370.	1.3	167
3	A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis. Applied Catalysis B: Environmental, 2013, 132-133, 332-341.	10.8	156
4	The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways. Chemical Engineering Journal, 2020, 380, 122422.	6.6	142
5	A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance. Applied Surface Science, 2015, 340, 35-42.	3.1	136
6	Facile composition-controlled preparation and photocatalytic application of BiOCl/Bi2O2CO3 nanosheets. Applied Catalysis B: Environmental, 2014, 150-151, 486-495.	10.8	134
7	Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H ₂ Evolution over Black TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 18758-18771.	4.0	127
8	Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chemical Engineering Journal, 2015, 263, 419-426.	6.6	123
9	Superhydrophobic RTV silicone rubber insulator coatings. Applied Surface Science, 2012, 258, 2972-2976.	3.1	108
10	Harnessing Ag nanofilm as an electrons transfer mediator for enhanced visible light photocatalytic performance of Ag@AgCl/Ag nanofilm/ZIF-8 photocatalyst. Applied Catalysis B: Environmental, 2017, 202, 64-71.	10.8	105
11	Photocatalytic degradation of carbamazepine using hierarchical BiOCl microspheres: Some key operating parameters, degradation intermediates and reaction pathway. Chemical Engineering Journal, 2015, 273, 156-165.	6.6	84
12	Effects of oxygen vacancy on the electronic structure and absorption spectra of bismuth oxychloride. Computational Materials Science, 2012, 61, 180-184.	1.4	68
13	Low temperature one-step synthesis of rutile TiO 2 /BiOCl composites with enhanced photocatalytic activity. Materials Characterization, 2015, 99, 8-16.	1.9	68
14	DFT+U predictions: The effect of oxygen vacancy on the structural, electronic and photocatalytic properties of Mn-doped BiOCl. Computational Materials Science, 2013, 71, 135-145.	1.4	59
15	Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability. Journal of Colloid and Interface Science, 2017, 491, 238-245.	5.0	58
16	A facile approach for the tunable fabrication of BiOBr photocatalysts with high activity and stability. Applied Surface Science, 2015, 355, 1075-1082.	3.1	56
17	Synthesis of Bi ₄ O ₅ Br ₂ from reorganization of BiOBr and its excellent visible light photocatalytic activity. Dalton Transactions, 2016, 45, 9182-9186.	1.6	54
18	Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Physical Chemistry Chemical Physics, 2019, 21, 868-875.	1.3	51

XIAOCHAO ZHANG

#	Article	IF	CITATIONS
19	Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(III) doped as an activation center. Journal of Colloid and Interface Science, 2021, 584, 174-181.	5.0	45
20	RhB-sensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation. Applied Surface Science, 2014, 317, 517-525.	3.1	44
21	First-principles investigation of impurity concentration influence on bonding behavior, electronic structure and visible light absorption for Mn-doped BiOCl photocatalyst. Physica B: Condensed Matter, 2012, 407, 4416-4424.	1.3	39
22	Assisting Bi2MoO6 microspheres with phenolic resin-based ACSs as attractive tailor-made supporter for highly-efficient photocatalytic CO2 reduction. Green Energy and Environment, 2021, 6, 693-702.	4.7	38
23	In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability. Separation and Purification Technology, 2020, 247, 117007.	3.9	35
24	Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br2 Z-Scheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere, 2019, 235, 767-775.	4.2	34
25	Millimeter-level nitrogen modified activated carbon spheres assisted Bi4Ti3O12 composites for bifunctional adsorption/photoreduction of CO2. Chemical Engineering Journal, 2021, 417, 128218.	6.6	34
26	Influence of production method, silicone type and thickness on silicon rubber superhydrophobic coatings. Progress in Organic Coatings, 2016, 90, 291-295.	1.9	33
27	Photocatalytic Reduction of CO2 to CO over 3D Bi2MoO6 Microspheres: Simple Synthesis, High Efficiency and Selectivity, Reaction Mechanism. Catalysis Letters, 2020, 150, 2510-2516.	1.4	30
28	Enhanced photocatalytic reduction of CO ₂ to CO over BiOBr assisted by phenolic resin-based activated carbon spheres. RSC Advances, 2019, 9, 14391-14399.	1.7	28
29	Enhanced charge separation and increased oxygen vacancies of h-BN/OV-BiOCl for improved visible-light photocatalytic performance. RSC Advances, 2019, 9, 14286-14295.	1.7	27
30	Citric acid-assisted synthesis of nano-Ag/BiOBr with enhanced photocatalytic activity. Science China Chemistry, 2015, 58, 457-466.	4.2	25
31	Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture. Journal of Materials Science, 2018, 53, 9429-9448.	1.7	25
32	Simple hydrolysis-photodeposition route to synthesize Ag/BiOCl0.5Br0.5 composites with highly enhanced visible-light photocatalytic properties. Separation and Purification Technology, 2015, 154, 68-75.	3.9	24
33	DFTÂ+ÂU predictions: structural stability, electronic and optical properties, oxidation activity of BiOCl photocatalysts with 3d transition metals doping. Journal of Materials Science, 2018, 53, 4494-4506.	1.7	24
34	Modification of Au nanoparticles electronic state by MOFs defect engineering to realize highly active photocatalytic oxidative esterification of benzyl alcohol with methanol. Catalysis Communications, 2020, 140, 106002.	1.6	23
35	An in vitro study on the cytotoxicity of bismuth oxychloride nanosheets in human HaCaT keratinocytes. Food and Chemical Toxicology, 2015, 80, 52-61.	1.8	22
36	Two-dimensional/two-dimensional heterojunction-induced accelerated charge transfer for photocatalytic hydrogen evolution over Bi5O7Br/Ti3C2: Electronic directional transport. Journal of Colloid and Interface Science, 2022, 617, 53-64.	5.0	22

XIAOCHAO ZHANG

#	Article	IF	CITATIONS
37	Slow-releasing Cl- to prepare BiOCl thin film on Bi plate and its photocatalytic properties. Materials Letters, 2016, 174, 126-128.	1.3	19
38	In-situ electrochemical-ion-exchange synthesis of novel Bi12SiO20/BiOBr composite film from Bi plate for enhanced photocatalytic CO2 reduction activity. Materials Letters, 2020, 274, 127990.	1.3	18
39	Atomically dispersed Palladium-Ethylene Glycol- Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism. Journal of Colloid and Interface Science, 2021, 603, 17-24.	5.0	18
40	Low temperature preparation of flower-like BiOCl film and its photocatalytic activity. Science China Chemistry, 2012, 55, 2438-2444.	4.2	17
41	Theoretical insights into the adsorption of monatomic Ag on the (2×2) BiOCl (001) surfaces. Computational Materials Science, 2014, 95, 113-120.	1.4	16
42	Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications. Thin Solid Films, 2014, 562, 506-512.	0.8	16
43	Synthesis of MnO2 modified porous carbon spheres by preoxidation-assisted impregnation for catalytic oxidation of indoor formaldehyde. Journal of Porous Materials, 2020, 27, 801-815.	1.3	16
44	Facile hydrolysis synthesis of novel Bi12O17Br2 photocatalyst with superior reduction ability and photocatalytic activity. Materials Letters, 2018, 224, 5-8.	1.3	15
45	HCl post-processing BiOBr photocatalyst: structure, morphology, and composition and their impacts to activity. RSC Advances, 2017, 7, 50079-50086.	1.7	11
46	Synthesis and evaluation of activated carbon spheres with copper modification for gaseous elemental mercury removal. Journal of Porous Materials, 2019, 26, 693-703.	1.3	11
47	Synthesis of CeO2-modified activated carbon spheres by grafting and coordinating reactions for elemental mercury removal. Journal of Materials Science, 2019, 54, 2836-2852.	1.7	11
48	Removal of Iron(III) and Aluminum Ions from Phosphoric Acid–Nitric Acid Solutions by S957 Chelation Resin: Kinetics, Dynamic Adsorption, and Elution. Industrial & Engineering Chemistry Research, 2019, 58, 21641-21648.	1.8	10
49	In Situ Synthesis of Hydrangea Finch Coral-like Bi ₁₂ SiO ₂₀ Film with Highly Effective Photocatalytic CO ₂ Reduction Performance. ACS Applied Energy Materials, 2021, 4, 15-19.	2.5	10
50	Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst. Journal of Molecular Graphics and Modelling, 2016, 66, 41-46.	1.3	9
51	In Situ Hydrothermal Synthesis of Metallic Bi Selfâ€Đeposited Bi ₂ SiO ₅ with Enhanced Photocatalytic CO ₂ Reduction Performance. Solar Rrl, 2022, 6, .	3.1	9
52	Effects of morphology and surface hydroxyl on the toxicity of BiOCl in human HaCaT cells. Chemosphere, 2016, 163, 438-445.	4.2	8
53	Optimized design of novel Pt decorated 3D BiOBr flower-microsphere synthesis for highly efficient photocatalytic properties. Chemical Papers, 2018, 72, 2413-2423.	1.0	8
54	Fabrication and analysis of antimicrobial additives for powder coated surface. Progress in Organic Coatings, 2019, 127, 308-318.	1.9	8

XIAOCHAO ZHANG

#	Article	IF	CITATIONS
55	Bi2S3/nylon membrane photothermal absorber with water shortage warning capability for seawater desalination. Materials Letters, 2021, 286, 129188.	1.3	8
56	Effect of chlorine ion on the crystalline and photocatalytic activity of BiOCl for the degradation of Rhodamine B. Crystal Research and Technology, 2013, 48, 496-504.	0.6	7
57	Structural and electronic properties of Cu-doped Zn5(OH)6(CO3)2 from first principles. Journal of Materials Science, 2015, 50, 6794-6807.	1.7	7
58	Enhancement in photocatalytic performance of Ag–AgCl decorated with h-WO3 and mechanism insight. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	7
59	In situ growth of BiOCl thin film on Bi plate for photocatalytic application. Materials Letters, 2020, 260, 126937.	1.3	7
60	Three-Dimensional Bi \$\$_{5}\$\$ 5 O \$\$_{7}\$\$ 7 I Photocatalysts for Efficient Removal of NO in Air Under Visible Light. Aerosol Science and Engineering, 2017, 1, 33-40.	1.1	6
61	Regulating electronic properties of <scp>BiOBr</scp> to enhance visible light response via 3d transition metals doping: <scp>DFT</scp> + U calculations. International Journal of Quantum Chemistry, 2021, 121, .	1.0	6
62	A Density Functional Theory Study on the Acidâ€Catalyzed Transesterification Mechanism for Biodiesel Production from Waste Cooking Oils. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 137-145.	0.8	5
63	Synthesis of millimeter-sized porous carbon spheres derived from different precursors for CO2 capture. Journal of Porous Materials, 2021, 28, 81-91.	1.3	5
64	Effect of nanoclay on electrical and mechanical properties of polyurethane conductive coatings filled with nickel-coated carbon fibers. Polymer Engineering and Science, 2014, 54, 1120-1125.	1.5	4
65	Thermodynamic and kinetic studies on OH-involved photo-decarboxylation mechanism for waste cooking oils to biofuels. Fuel, 2019, 254, 115665.	3.4	4
66	BiOBr-photocatalyzedcis–transisomerization of 9-octadecenoic acids in different atmospheres. Catalysis Science and Technology, 2019, 9, 3380-3387.	2.1	4
67	Preparation of aluminium metallic pigmented powder coatings with high color stability using a novel method: Microwave bonding. Progress in Organic Coatings, 2020, 147, 105787.	1.9	4
68	Preoxidation-assisted nitrogen enrichment strategy to decorate porous carbon spheres for catalytic adsorption/oxidation of methyl mercaptan. RSC Advances, 2020, 10, 37644-37656.	1.7	4
69	Hydrothermal carbon modified Cu–Fe oxide with enhanced Fe(II)/Fe(III) cycle to activate peroxydisulfate for phenol removal. Journal of Sol-Gel Science and Technology, 2022, 103, 526-538.	1.1	4
70	Facile synthesis of nitrogen-rich porous carbon spheres assisted by NaNH2 as a bifunctional activator and nitrogen source for CO2 capture. Journal of Environmental Chemical Engineering, 2021, 9, 106605.	3.3	3
71	Theoretical insights into effective electron transfer and migration behavior for CO ₂ reduction on the BiOBr(001) surfaces. Physical Chemistry Chemical Physics, 2022, 24, 2032-2039.	1.3	3
72	In-situ synthesis of BiVO4 film by OHâ^' assisted VO3â^' releasing and its efficient visible light photocatalytic property. Catalysis Communications, 2020, 144, 106071.	1.6	2

#	Article	IF	CITATIONS
73	Controllable Synthesis of <scp>BiOCl</scp> with <scp>Zâ€Scheme</scp> (001)/(110) Facet Homojunction and their Photocatalytic Killing Effect on <scp>HePG2</scp> Cells in vitro. Photochemistry and Photobiology, 0, , .	1.3	1
74	Produce various powder coated surfaces with stable metal shine via microwave energy. Progress in Organic Coatings, 2021, 154, 106199.	1.9	0