Goran Ekstrom

List of Publications by Year in **Descending Order**

Source: https://exaly.com/author-pdf/674641/goran-ekstrom-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 13,784 107 241 h-index g-index citations papers 6.7 248 15,175 4.2

L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
241	The 28 November 2020 Landslide, Tsunami, and Outburst Flood 🖟 Hazard Cascade Associated With Rapid Deglaciation at Elliot Creek, British Columbia, Canada. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	1
240	Vertical force scaling in seismic source models of underground nuclear explosions. <i>Geophysical Journal International</i> , 2020 , 221, 251-264	2.6	1
239	Comparisons between measurements and predictions of Rayleigh wave amplification across the contiguous United States. <i>Physics of the Earth and Planetary Interiors</i> , 2020 , 299, 106407	2.3	2
238	Evidence of Overtone Interference in Fundamental-Mode Rayleigh Wave Phase and Amplitude Measurements. <i>Journal of Geophysical Research: Solid Earth</i> , 2020 , 125, e2019JB018540	3.6	3
237	Faulting processes during early-stage rifting: seismic and geodetic analysis of the 2009 2 010 Northern Malawi earthquake sequence. <i>Geophysical Journal International</i> , 2019 , 217, 1767-1782	2.6	13
236	A comparison of approaches for the prediction and inversion of surface wave phase delays. <i>Geophysical Journal International</i> , 2019 , 217, 1496-1514	2.6	О
235	Improving relative earthquake locations using surface-wave source corrections. <i>Geophysical Journal International</i> , 2019 , 219, 297-312	2.6	2
234	The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics. <i>Landslides</i> , 2019 , 16, 2301-2319	6.6	22
233	Age dependence and anisotropy of surface-wave phase velocities in the Pacific. <i>Geophysical Journal International</i> , 2019 , 216, 640-658	2.6	7
232	The persistent signature of tropical cyclones in ambient seismic noise. <i>Earth and Planetary Science Letters</i> , 2018 , 484, 287-294	5.3	21
231	Broad-band seismic analysis and modeling of the 2015 Taan Fjord, Alaska landslide using Instaseis. <i>Geophysical Journal International</i> , 2018 , 213, 1912-1923	2.6	17
230	Observations of Seismometer Calibration and Orientation at USArray Stations, 2006 2 015. <i>Bulletin of the Seismological Society of America</i> , 2018 , 108, 2008-2021	2.3	10
229	The 2015 landslide and tsunami in Taan Fiord, Alaska. <i>Scientific Reports</i> , 2018 , 8, 12993	4.9	52
228	Erratum to Dentroid moment tensor solutions for deep earthquakes predating the digital era: The historical dataset (19071961)[Phys. Earth Planet. Inter. 106 (1998) 181190]. <i>Physics of the Earth and Planetary Interiors</i> , 2018 , 284, 82-83	2.3	
227	Seismic Reconstruction of the 2012 Palisades Rockfall Using the Analytical Solution to Lamb Problem. <i>Bulletin of the Seismological Society of America</i> , 2017 , 107, 63-71	2.3	8
226	Plate coupling and strain in the far western Aleutian arc modeled from GPS data. <i>Geophysical Research Letters</i> , 2017 , 44, 3176-3183	4.9	11
225	The relationship between bulk-mass momentum and short-period seismic radiation in catastrophic landslides. <i>Journal of Geophysical Research F: Earth Surface</i> , 2017 , 122, 1201-1215	3.8	32

(2013-2017)

224	Short-period surface-wave phase velocities across the conterminous United States. <i>Physics of the Earth and Planetary Interiors</i> , 2017 , 270, 168-175	2.3	30
223	Evidences of Surface Rupture Associated With a Low-Magnitude (Mw5.0) Shallow Earthquake in the Ecuadorian Andes. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 8446-8458	3.6	21
222	The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth's mantle. <i>Journal of Geophysical Research: Solid Earth</i> , 2016 , 121, 2737-2771	3.6	57
221	Dynamics of the Oso-Steelhead landslide from broadband seismic analysis. <i>Natural Hazards and Earth System Sciences</i> , 2015 , 15, 1265-1273	3.9	37
220	Global Seismicity: Results from Systematic Waveform Analyses, 1976\(\overline{D}\)012 2015, 467-475		1
219	First geodetic observations of a deep earthquake: The 2013 Sea of Okhotsk Mw 8.3, 611 km-deep, event. <i>Geophysical Research Letters</i> , 2014 , 41, 3826-3832	4.9	7
218	Surface wave phase velocities of the Western United States from a two-station method. <i>Geophysical Journal International</i> , 2014 , 196, 1189-1206	2.6	35
217	Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis. <i>Geophysical Research Letters</i> , 2014 , 41, 4535-4541	4.9	61
216	A comparison of approaches to the prediction of surface wave amplitude. <i>Geophysical Journal International</i> , 2014 , 196, 386-404	2.6	15
215	Overtone Interference in Array-Based Love-Wave Phase Measurements. <i>Bulletin of the Seismological Society of America</i> , 2014 , 104, 2266-2277	2.3	17
214	An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms. <i>Geophysical Journal International</i> , 2014 , 199, 1713-1738	2.6	107
213	Love and Rayleigh phase-velocity maps, 5월0 s, of the western and central USA from USArray data. <i>Earth and Planetary Science Letters</i> , 2014 , 402, 42-49	5.3	62
212	Local amplification of Rayleigh waves in the continental United States observed on the USArray. <i>Earth and Planetary Science Letters</i> , 2014 , 402, 50-57	5.3	19
211	Arrival-angle anomalies across the USArray Transportable Array. <i>Earth and Planetary Science Letters</i> , 2014 , 402, 58-68	5.3	16
210	Physical mechanisms for vertical-CLVD earthquakes at active volcanoes. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 1569-1586	3.6	40
209	Active Deformation Processes in Alaska, Based on 15 Years of GPS Measurements. <i>Geophysical Monograph Series</i> , 2013 , 1-42	1.1	42
208	Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?. <i>Geophysical Monograph Series</i> , 2013 , 369-384	1.1	10
207	On measuring surface wave phase velocity from station attaction cross-correlation of ambient signal. <i>Geophysical Journal International</i> , 2013 , 192, 346-358	2.6	42

206	Simple scaling of catastrophic landslide dynamics. <i>Science</i> , 2013 , 339, 1416-9	33.3	169
205	Rapid postseismic relaxation after the great 2006\(\textit{D}007 \) Kuril earthquakes from GPS observations in 2007\(\textit{D}011. \) Journal of Geophysical Research: Solid Earth, 2013, 118, 3691-3706	3.6	29
204	Global observation of vertical-CLVD earthquakes at active volcanoes. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 138-164	3.6	34
203	The global CMT project 2004\(\textit{\textit{2}}\)010: Centroid-moment tensors for 13,017 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 2012 , 200-201, 1-9	2.3	1397
202	Earthquakes along Eltanin transform system, SE Pacific Ocean: fault segments characterized by strong and poor seismic coupling and implications for long-term earthquake prediction. <i>Geophysical Journal International</i> , 2012 , 188, 421-434	2.6	26
201	European Mediterranean Regional Centroid Moment Tensor catalog: Solutions for 2005 2008. <i>Physics of the Earth and Planetary Interiors</i> , 2011 , 185, 74-81	2.3	83
200	Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation. <i>Journal of Geophysical Research</i> , 2011 , 116,		30
199	Source parameters of the 2008 Bukavu-Cyangugu earthquake estimated from InSAR and teleseismic data. <i>Geophysical Journal International</i> , 2011 , 184, 934-948	2.6	27
198	A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s. <i>Geophysical Journal International</i> , 2011 , 187, 1668-1686	2.6	147
197	Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks. <i>Earth, Planets and Space</i> , 2011 , 63, 519-523	2.9	51
196	Seismic moment tensors of the April 2009, L'Aquila (Central Italy), earthquake sequence. <i>Geophysical Journal International</i> , 2010 , 180, 238-242	2.6	62
195	Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America. <i>Geophysical Journal International</i> , 2010 , 183, 1538-1558	2.6	29
194	Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	32
193	Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. <i>Journal of Geophysical Research</i> , 2010 , 115,		65
192	Effects of three-dimensional Earth structure on CMT earthquake parameters. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 179, 178-190	2.3	63
191	Glacial Earthquakes in Greenland and Antarctica. <i>Annual Review of Earth and Planetary Sciences</i> , 2010 , 38, 467-491	15.3	74
190	Anomalous earthquakes associated with Nyiragongo Volcano: Observations and potential mechanisms. <i>Journal of Volcanology and Geothermal Research</i> , 2009 , 181, 219-230	2.8	33
189	The European Upper Mantle as Seen by Surface Waves. Surveys in Geophysics, 2009, 30, 463-501	7.6	41

(2007-2009)

188	Global seismological shear velocity and attenuation: A comparison with experimental observations. <i>Earth and Planetary Science Letters</i> , 2009 , 284, 65-75	5.3	69
187	Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	140
186	The European Upper Mantle as Seen by Surface Waves 2009 , 195-233		
185	The shear-wave velocity structure in the upper mantle beneath Eurasia. <i>Geophysical Journal International</i> , 2008 , 174, 978-992	2.6	54
184	Europe-Mediterranean tomography: High correlation between new seismic data and independent geophysical observables. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	13
183	A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution. <i>Journal of Geophysical Research</i> , 2008 , 113,		29
182	Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. <i>Journal of Geophysical Research</i> , 2008 , 113,		375
181	The global attenuation structure of the upper mantle. Journal of Geophysical Research, 2008, 113,		100
180	Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. <i>Journal of Geophysical Research</i> , 2008 , 113,		132
179	Radial seismic anisotropy as a constraint for upper mantle rheology. <i>Earth and Planetary Science Letters</i> , 2008 , 267, 213-227	5.3	92
178	A new finite-frequency shear-velocity model of the European-Mediterranean region. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	17
177	Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	79
176	Measurements of Seismometer Orientation at USArray Transportable Array and Backbone Stations. <i>Seismological Research Letters</i> , 2008 , 79, 554-561	3	56
175	The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. <i>Landslides</i> , 2008 , 5, 445-455	6.6	62
174	Nonlinear Crustal Corrections for Normal-Mode Seismograms. <i>Bulletin of the Seismological Society of America</i> , 2007 , 97, 1756-1762	2.3	35
173	Analysis of glacial earthquakes. Journal of Geophysical Research, 2007, 112,		60
172	Length scales, patterns and origin of azimuthal seismic anisotropy in the upper mantle as mapped by Rayleigh waves. <i>Geophysical Journal International</i> , 2007 , 171, 451-462	2.6	25
171	Global Seismicity: Results from Systematic Waveform Analyses, 1976⊠005 2007 , 473-481		6

170	European Mediterranean Regional Centroid Moment Tensor catalog: Solutions for years 2003 and 2004. <i>Physics of the Earth and Planetary Interiors</i> , 2007 , 164, 90-112	2.3	40
169	Seasonality and increasing frequency of Greenland glacial earthquakes. <i>Science</i> , 2006 , 311, 1756-8	33.3	118
168	Observations of Time-dependent Errors in Long-period Instrument Gain at Global Seismic Stations. <i>Seismological Research Letters</i> , 2006 , 77, 12-22	3	34
167	Rupture characteristics of the 2003 Mw 7.6 mid-Indian Ocean earthquake: Implications for seismic properties of young oceanic lithosphere. <i>Journal of Geophysical Research</i> , 2006 , 111,		32
166	Global models of surface wave attenuation. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		69
165	Accuracy of high-rate GPS for seismology. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	48
164	Global Detection and Location of Seismic Sources by Using Surface Waves. <i>Bulletin of the Seismological Society of America</i> , 2006 , 96, 1201-1212	2.3	72
163	The Italian CMT dataset from 1977 to the present. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 159, 286-303	2.3	315
162	Seismotectonics of the Cyprian Arc. <i>Geophysical Journal International</i> , 2006 , 164, 176-181	2.6	59
161	A simple method of representing azimuthal anisotropy on a sphere. <i>Geophysical Journal International</i> , 2006 , 165, 668-671	2.6	7
160	Constraints on global maps of phase velocity from surface-wave amplitudes. <i>Geophysical Journal International</i> , 2006 , 167, 820-826	2.6	23
159	Deep structure and seismic anisotropy beneath the East Pacific Rise. <i>Earth and Planetary Science Letters</i> , 2005 , 232, 259-272	5.3	45
158	Global seismicity of 2002: centroidhoment-tensor solutions for 1034 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 2005 , 148, 303-326	2.3	9
157	Global seismicity of 2003: centroidhoment-tensor solutions for 1087 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 2005 , 148, 327-351	2.3	165
156	Multiple CMT source analysis of the 2004 Sumatra earthquake. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	126
155	Performance Review of the Global Seismographic Network for the Sumatra-Andaman Megathrust Earthquake. <i>Seismological Research Letters</i> , 2005 , 76, 331-343	3	17
154	The great Sumatra-Andaman earthquake of 26 December 2004. Science, 2005, 308, 1127-33	33.3	781
153	Validation of Regional and Teleseismic Travel-Time Models by Relocating Ground-Truth Events. Bulletin of the Seismological Society of America, 2004, 94, 897-919	2.3	17

(2003-2004)

152	A Common Origin for Aftershocks, Foreshocks, and Multiplets. <i>Bulletin of the Seismological Society of America</i> , 2004 , 94, 88-98	2.3	156	
151	The 14 November 2001 Kokoxili (Kunlunshan), Tibet, Earthquake: Rupture Transfer through a Large Extensional Step-Over. <i>Bulletin of the Seismological Society of America</i> , 2004 , 94, 1173-1194	2.3	47	
150	Multiple resolution surface wave tomography: the Mediterranean basin. <i>Geophysical Journal International</i> , 2004 , 157, 293-304	2.6	50	
149	Characteristics of deep (13 km) Hawaiian earthquakes and Hawaiian earthquakes west of 155.55°W. <i>Geochemistry, Geophysics, Geosystems</i> , 2004, 5, n/a-n/a	3.6	31	
148	Ambient Earth noise: A survey of the Global Seismographic Network. <i>Journal of Geophysical Research</i> , 2004 , 109,		94	
147	Collection of a Reference Event Set for Regional and Teleseismic Location Calibration. <i>Bulletin of the Seismological Society of America</i> , 2004 , 94, 1528-1545	2.3	14	
146	European-Mediterranean regional centroid-moment tensor catalog: solutions for years 2001 and 2002. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 145, 127-147	2.3	75	
145	Long-Period Source Characteristics of the 1975 Kalapana, Hawaii, Earthquake. <i>Bulletin of the Seismological Society of America</i> , 2004 , 94, 422-429	2.3	26	
144	Centroid Moment Tensor Solutions for Taiwan Earthquakes of the WWSSN Era (1963-1975). <i>Terrestrial, Atmospheric and Oceanic Sciences</i> , 2004 , 15, 061	1.8	3	
143	Secondary Aftershocks and Their Importance for Aftershock Forecasting. <i>Bulletin of the Seismological Society of America</i> , 2003 , 93, 1433-1448	2.3	53	
142	J362D28: a new joint model of compressional and shear velocity in the Earth's mantle. <i>Geophysical Journal International</i> , 2003 , 153, 443-466	2.6	76	
141	Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. <i>Geophysical Journal International</i> , 2003 , 154, 559-583	2.6	94	
140	Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models. <i>Geophysical Journal International</i> , 2003 , 155, 696-714	2.6	124	
139	The June 2000 Mw 7.9 earthquakes south of Sumatra: Deformation in the India Australia Plate. <i>Journal of Geophysical Research</i> , 2003 , 108, ESE 6-1-ESE 6-16		64	
138	A reassessment of the rupture characteristics of oceanic transform earthquakes. <i>Journal of Geophysical Research</i> , 2003 , 108,		35	
137	Global seismicity of 2001: centroid-moment tensor solutions for 961 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 2003 , 136, 165-185	2.3	21	
136	Centroid-moment tensor solutions for JulyBeptember 1997. <i>Physics of the Earth and Planetary Interiors</i> , 2003 , 136, 119-131	2.3	3	
135	Centroid-moment tensor solutions for January to March 1998. <i>Physics of the Earth and Planetary Interiors</i> , 2003 , 136, 133-144	2.3	4	

134	Centroid-moment tensor solutions for October December 2000. <i>Physics of the Earth and Planetary Interiors</i> , 2003 , 136, 145-163	2.3	12
133	Glacial earthquakes. <i>Science</i> , 2003 , 302, 622-4	33.3	169
132	Plume-driven plumbing and crustal formation in Iceland. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 4-1		102
131	Joint inversion of normal mode and body wave data for inner core anisotropy 1. Laterally homogeneous anisotropy. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 20-1-ESE 20-16		35
130	Joint inversion of normal mode and body wave data for inner core anisotropy 2. Possible complexities. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 21-1-ESE 21-17		30
129	Triggering of the 1999 MW 7.1 Hector Mine earthquake by aftershocks of the 1992 MW 7.3 Landers earthquake. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 6-1-ESE 6-13		133
128	European Mediterranean regional centroid-moment tensors: 1997 1000. <i>Physics of the Earth and Planetary Interiors</i> , 2002 , 130, 71-101	2.3	177
127	Determining surface wave arrival angle anomalies. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 7-1		23
126	New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies. <i>Journal of Geophysical Research</i> , 2002 , 107, ESE 1-1-ESE 1-14		95
125	Seismotectonic re-evaluation of the 1976 Friuli, Italy, seismic sequence. <i>Journal of Seismology</i> , 2001 , 5, 73-83	1.5	44
124	Global Event Location with Full and Sparse Data Sets Using Three-dimensional Models of Mantle P-wave Velocity 2001 , 158, 291-317		32
123	Global Models of Surface Wave Group Velocity 2001 , 158, 1377-1399		35
122	Earthquake slip on oceanic transform faults. <i>Nature</i> , 2001 , 410, 74-7	50.4	152
121	Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. Journal of Geophysical Research, 2001 , 106, 11169-11199		161
120	Time domain analysis of Earth's long-period background seismic radiation. <i>Journal of Geophysical Research</i> , 2001 , 106, 26483-26493		81
119	The 1994 Java tsunami earthquake: Slip over a subducting seamount. <i>Journal of Geophysical Research</i> , 2001 , 106, 6595-6607		124
118	A constraint on the shear stress at the Pacific-Australian plate boundary from heat flow and seismicity at the Kermadec forearc. <i>Journal of Geophysical Research</i> , 2001 , 106, 6817-6833		50
117	Preferential detection of the Lehmann discontinuity beneath continents. <i>Geophysical Research Letters</i> , 2001 , 28, 4655-4658	4.9	64

116	Centroid-moment tensor solutions for Aprillune 2000. <i>Physics of the Earth and Planetary Interiors</i> , 2001 , 123, 1-14	2.3	16	
115	Centroid moment tensor solutions for intermediate-depth earthquakes of the WWSSNHGLP era (1962🛮 975). <i>Physics of the Earth and Planetary Interiors</i> , 2001 , 124, 1-7	2.3	15	
114	Centroid Imoment tensor solutions for JulyBeptember 2000. <i>Physics of the Earth and Planetary Interiors</i> , 2001 , 124, 9-23	2.3	14	
113	Global Models of Surface Wave Group Velocity 2001 , 1377-1399		O	
112	Global Event Location with Full and Sparse Data Sets Using Three-dimensional Models of Mantle P-wave Velocity 2001 , 291-317		4	
111	Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence. <i>Journal of Seismology</i> , 2000 , 4, 501-516	1.5	49	
110	Source properties of the 1997 B8 Central Italy earthquake sequence from inversion of long-period and broad-band seismograms. <i>Journal of Seismology</i> , 2000 , 4, 365-375	1.5	27	
109	Mapping the Lithosphere and Asthenosphere With Surface Waves: Lateral Structure and Anisotropy. <i>Geophysical Monograph Series</i> , 2000 , 239-255	1.1	13	
108	Centroid-moment tensor solutions for JulyBeptember 1999. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 119, 311-319	2.3	17	
107	Centroid Enough tensor solutions for October December, 1999. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 121, 205-221	2.3	24	
106	Centroid-moment tensor solutions for January March, 2000. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 121, 175-187	2.3	5	
105	Centroid-moment tensor solutions for JanuaryMarch 1999. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 118, 1-11	2.3	13	
104	Centroid-moment tensor solutions for Aprillune, 1999. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 119, 161-171	2.3	5	
103	Centroid-moment tensor solutions for Aprillune, 1998. <i>Physics of the Earth and Planetary Interiors</i> , 1999 , 112, 11-19	2.3	15	
102	Centroid-moment tensor solutions for Aprillune, 1997. <i>Physics of the Earth and Planetary Interiors</i> , 1999 , 112, 1-9	2.3	6	
101	Centroid-moment tensor solutions for JulyBeptember, 1998. <i>Physics of the Earth and Planetary Interiors</i> , 1999 , 114, 99-107	2.3	17	
100	Centroid-moment tensor solutions for October December, 1998. <i>Physics of the Earth and Planetary Interiors</i> , 1999 , 115, 1-16	2.3	16	
99	A global study of Pn anisotropy beneath continents. <i>Journal of Geophysical Research</i> , 1999 , 104, 963-98	30	83	

98	Rupture depths and source processes of the 1997-1998 earthquake sequence in central Italy. <i>Bulletin of the Seismological Society of America</i> , 1999 , 89, 305-310	2.3	15
97	The unique anisotropy of the Pacific upper mantle. <i>Nature</i> , 1998 , 394, 168-172	50.4	350
96	Effects of slight anisotropy on surface waves. <i>Geophysical Journal International</i> , 1998 , 132, 654-666	2.6	44
95	Centroid-moment tensor solutions for OctoberDecember, 1996. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 105, 95-108	2.3	15
94	Centroid-moment tensor solutions for January March 1997. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 106, 171-179	2.3	13
93	Centroid moment tensor solutions for deep earthquakes predating the digital era: The historical dataset (1907¶961). <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 106, 181-190	2.3	10
92	Centroid-moment tensor solutions for October December, 1997. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 109, 93-105	2.3	11
91	Global and regional surface-wave inversions: A spherical-spline parameterization. <i>Geophysical Research Letters</i> , 1998 , 25, 207-210	4.9	24
90	Moment tensor analysis of the Central Italy Earthquake Sequence of September (October 1997. Geophysical Research Letters, 1998, 25, 1971-1974	4.9	108
89	Plate tectonic framework for the October 9, 1996, Cyprus Earthquake. <i>Geophysical Research Letters</i> , 1998 , 25, 2241-2244	4.9	16
88	Faulting mechanism of anomalous earthquakes near BEdarbunga Volcano, Iceland. <i>Journal of Geophysical Research</i> , 1998 , 103, 17973-17983		65
87	Global CMT analysis of moderate earthquakes, Mw ? 4.5, using intermediate-period surface waves. <i>Bulletin of the Seismological Society of America</i> , 1998 , 88, 1003-1013	2.3	57
86	A new analysis of the great 1970 Colombia earthquake and its isotropic component. <i>Journal of Geophysical Research</i> , 1997 , 102, 20423-20434		15
85	Investigating discrepancies among measurements of traveling and standing wave attenuation. <i>Journal of Geophysical Research</i> , 1997 , 102, 24529-24544		28
84	Centroid moment tensor solutions for deep earthquakes predating the digital era: the World-Wide Standardized Seismograph Network dataset (1962¶976). <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 99, 121-129	2.3	26
83	Centroid-moment tensor solutions for October D ecember 1995. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 101, 1-12	2.3	33
82	Interpretation of earthquake epicenter and CMT centroid locations, in terms of rupture length and direction. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 102, 123-132	2.3	34
81	Centroid-moment tensor solutions for JanuaryMarch 1996. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 102, 1-9	2.3	17

80	Centroid-moment tensor solutions for Aprillune, 1996. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 102, 11-20	2.3	15	
79	Calibration of the HGLP seismograph network and centroid-moment tensor analysis of significant earthquakes of 1976. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 101, 219-243	2.3	36	
78	Centroid-moment tensor solutions for JulyBeptember, 1996. <i>Physics of the Earth and Planetary Interiors</i> , 1997 , 102, 133-143	2.3	9	
77	Measurements and global models of surface wave propagation. <i>Journal of Geophysical Research</i> , 1997 , 102, 8137-8157		311	
76	Three-Dimensional Velocity Structure of the Earth Upper Mantle 1997 , 187-198		2	
75	Constraints on Crustal and Upper Mantle Structure from Intermediate Period Surface Waves 1997 , 28	7-294		
74	Centroid-moment tensor solutions for JanuaryMarch 1995. <i>Physics of the Earth and Planetary Interiors</i> , 1996 , 93, 147-157	2.3	21	
73	Centroid-moment tensor solutions for Aprillune 1995. <i>Physics of the Earth and Planetary Interiors</i> , 1996 , 96, 1-13	2.3	16	
72	Centroid-moment tensor solutions for JulyBeptember 1995. <i>Physics of the Earth and Planetary Interiors</i> , 1996 , 97, 3-13	2.3	35	
71	The 1993 Killari earthquake in central India: A new fault in Mesozoic basalt flows?. <i>Journal of Geophysical Research</i> , 1996 , 101, 8543-8560		57	
70	Structure at the Top and Bottom of the Mantle 1996 , 521-550		9	
69	Instrument responses of digital seismographs at Borovoye, Kazakhstan, by inversion of transient calibration pulses. <i>Bulletin of the Seismological Society of America</i> , 1996 , 86, 191-203	2.3	9	
68	Improving teleseismic event locations using a three-dimensional Earth model. <i>Bulletin of the Seismological Society of America</i> , 1996 , 86, 788-796	2.3	30	
67	Centroid-moment tensor solutions for Aprillune 1994. <i>Physics of the Earth and Planetary Interiors</i> , 1995 , 88, 69-78	2.3	33	
66	Centroid-moment tensor solutions for JulyBeptember 1994. <i>Physics of the Earth and Planetary Interiors</i> , 1995 , 90, 1-11	2.3	19	
65	Centroid-moment tensor solutions for OctoberDecember 1994. <i>Physics of the Earth and Planetary Interiors</i> , 1995 , 91, 187-201	2.3	34	
64	Evidence of bulk attenuation in the asthenosphere from recordings of the Bolivia Earthquake. <i>Geophysical Research Letters</i> , 1995 , 22, 2309-2312	4.9	21	
63	Calculation of static deformation following the Bolivia Earthquake by summation of Earth's normal modes. <i>Geophysical Research Letters</i> , 1995 , 22, 2289-2292	4.9	12	

62	Earthquake Activity Associated with Underground Nuclear Explosions. <i>NATO ASI Series Partnership Sub-series 2, Environment</i> , 1995 , 21-34		6
61	Rapid Earthquake Analysis Utilizes The Internet. <i>Computers in Physics</i> , 1994 , 8, 632		14
60	Empirical Measurements of Tectonic Moment Release In Nuclear Explosions From Teleseismic Surface Waves and Body Waves. <i>Geophysical Journal International</i> , 1994 , 117, 120-140	2.6	49
59	Anomalous earthquakes on volcano ring-fault structures. <i>Earth and Planetary Science Letters</i> , 1994 , 128, 707-712	5.3	60
58	Centroid-moment tensor solutions for JulyBeptember 1993. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 83, 165-174	2.3	28
57	Application of the CMT algorithm to analog recordings of deep earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 83, 283-297	2.3	15
56	Centroid-moment tensor solutions for January March 1993. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 82, 9-17	2.3	18
55	Centroid-moment tensor solutions for Aprillune 1993. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 83, 1-11	2.3	17
54	Centroid-moment tensor solutions for October December 1993. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 85, 215-225	2.3	18
53	Centroid-moment tensor solutions for JanuaryMarch 1994. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 86, 253-261	2.3	41
52	Bering Sea Earthquake of February 21, 1991: Active faulting along the Bering Shelf Edge. <i>Journal of Geophysical Research</i> , 1993 , 98, 2155-2165		6
51	Seismic radiation by magma injection: An anomalous seismic event near Tori Shima, Japan. <i>Journal of Geophysical Research</i> , 1993 , 98, 6511-6522		51
50	Centroid-moment tensor solutions for October December 1992. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 80, 89-103	2.3	30
49	Centroid-moment tensor solutions for January March 1992. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 77, 143-150	2.3	30
48	Centroid-moment tensor solutions for Aprillune 1992. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 77, 151-163	2.3	29
47	Centroid-moment tensor solutions for JulyBeptember 1992. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 79, 287-297	2.3	29
46	Slip Partitioning along Major Convergent Plate Boundaries 1993 , 183-210		4
45	Seismicity and geometry of a 110-km-long blind thrust fault 2. Synthesis of the 1982¶985 California Earthquake Sequence. <i>Journal of Geophysical Research</i> , 1992 , 97, 4865		81

44	Seismicity and geometry of a 110-km-long blind thrust fault 1. The 1985 Kettleman Hills, California, earthquake. <i>Journal of Geophysical Research</i> , 1992 , 97, 4843		89	
43	Centroid-moment tensor solutions for October D ecember 1991. <i>Physics of the Earth and Planetary Interiors</i> , 1992 , 74, 89-100	2.3	27	
42	Centroid-moment tensor solutions for Aprillune 1991. <i>Physics of the Earth and Planetary Interiors</i> , 1992 , 71, 6-14	2.3	32	
41	Centroid-moment tensor solutions for JulyBeptember 1991. <i>Physics of the Earth and Planetary Interiors</i> , 1992 , 72, 1-11	2.3	74	
40	Centroid-moment tensor solutions for January March 1991. <i>Physics of the Earth and Planetary Interiors</i> , 1992 , 70, 7-15	2.3	20	
39	Ray Tracing On A Heterogeneous Sphere By Lie Series. <i>Geophysical Journal International</i> , 1991 , 104, 11-	- 2 ₹.6	4	
38	Centroid-moment tensor solutions for JulyBeptember, 1990. <i>Physics of the Earth and Planetary Interiors</i> , 1991 , 67, 211-220	2.3	33	
37	Centroid-moment tensor solutions for OctoberDecember 1990. <i>Physics of the Earth and Planetary Interiors</i> , 1991 , 68, 201-214	2.3	30	
36	Centroid-moment tensor solutions for April June 1990. <i>Physics of the Earth and Planetary Interiors</i> , 1991 , 66, 133-143	2.3	63	
35	Centroid-moment tensor solutions for January March, 1990. <i>Physics of the Earth and Planetary Interiors</i> , 1991 , 65, 197-206	2.3	33	
34	The 23 May 1989 MacQuarie Ridge Earthquake: A very broad band analysis. <i>Geophysical Research Letters</i> , 1990 , 17, 993-996	4.9	34	
33	Centroid-moment tensor solutions for JulyBeptember 1989. <i>Physics of the Earth and Planetary Interiors</i> , 1990 , 62, 185-193	2.3	28	
32	Centroid-moment tensor solutions for October December 1989. <i>Physics of the Earth and Planetary Interiors</i> , 1990 , 62, 194-207	2.3	40	
31	Centroid-moment tensor solutions for January March 1989. <i>Physics of the Earth and Planetary Interiors</i> , 1990 , 59, 233-242	2.3	33	
30	Centroid-moment tensor solutions for Aprillune 1989. <i>Physics of the Earth and Planetary Interiors</i> , 1990 , 60, 243-253	2.3	44	
29	Macquarie earthquake of May 23, 1989. <i>Eos</i> , 1989 , 70, 700	1.5	6	
28	A very broad band inversion method for the recovery of earthquake source parameters. <i>Tectonophysics</i> , 1989 , 166, 73-100	3.1	78	
27	Centroid-moment tensor solutions for OctoberDecember 1988. <i>Physics of the Earth and Planetary Interiors</i> , 1989 , 57, 179-191	2.3	44	

26	Centroid-moment tensor solutions for JulyBeptember 1988. <i>Physics of the Earth and Planetary Interiors</i> , 1989 , 56, 165-180	2.3	35
25	Centroid-moment tensor solutions for October December 1987. <i>Physics of the Earth and Planetary Interiors</i> , 1989 , 54, 10-21	2.3	39
24	Centroid-moment tensor solutions for January March 1988. <i>Physics of the Earth and Planetary Interiors</i> , 1989 , 54, 22-32	2.3	42
23	Centroid-moment tensor solutions for Aprillune 1988. <i>Physics of the Earth and Planetary Interiors</i> , 1989 , 54, 199-209	2.3	36
22	Seismic strain rates in regions of distributed continental deformation. <i>Journal of Geophysical Research</i> , 1989 , 94, 10231-10257		156
21	Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. <i>Journal of Geophysical Research</i> , 1989 , 94, 15499-15519		139
20	Comparison of seismic and hydrodynamic yield determinations for the Soviet joint verification experiment of 1988. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 3456-60	11.5	22
19	Evidence of bias in estimations of earthquake size. <i>Nature</i> , 1988 , 332, 319-323	50.4	216
18	Centroid-moment tensor solutions for January March 1987. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 50, 116-126	2.3	53
17	Global seismicity of 1980: centroid-moment tensor solutions for 515 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 50, 127-154	2.3	70
16	Global seismicity of 1981: centroid-moment tensor solutions for 542 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 50, 155-182	2.3	56
15	Centroid-moment tensor solutions for Aprillune 1987. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 50, 215-225	2.3	41
14	Centroid-moment tensor solutions for JulyBeptember 1987. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 53, 1-11	2.3	38
13	Global seismicity of 1982 and 1983: additional centroid-moment tensor solutions for 553 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1988 , 53, 17-45	2.3	45
12	Centroid-moment tensor solutions for Aprillune 1986. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 45, 229-239	2.3	63
11	Centroid-moment tensor solutions for the 51 IASPEI selected earthquakes, 1980¶984. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 47, 62-66	2.3	16
10	Centroid-moment tensor solutions for JulyBeptember 1986. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 46, 305-315	2.3	53
9	Global seismicity of 1978: centroid-moment tensor solutions for 512 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 46, 316-342	2.3	77

LIST OF PUBLICATIONS

8	Centroid-moment tensor solutions for October D ecember 1986. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 48, 5-17	2.3	36
7	Global seismicity of 1979: centroid-moment tensor solutions for 524 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 48, 18-46	2.3	64
6	Centroid-moment tensor solutions for January March 1986. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 45, 1-10	2.3	85
5	Global seismicity of 1977: centroid-moment tensor solutions for 471 earthquakes. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 45, 11-36	2.3	122
4	Single station CMT; Application to the Michoacan, Mexico, Earthquake of September 19, 1985. Geophysical Research Letters, 1986 , 13, 173-176	4.9	40
3	A very broad band analysis of the Michoacan, Mexico, Earthquake of September 19, 1985. <i>Geophysical Research Letters</i> , 1986 , 13, 605-608	4.9	29
2	Centroid-moment tensor solutions for 35 earthquakes in Western North America (1977-1983). <i>Bulletin of the Seismological Society of America</i> , 1985 , 75, 23-39	2.3	46
1	Seismology of the Oso-Steelhead landslide		5