u00c6ther J Q Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6746177/publications.pdf

Version: 2024-02-01

83 papers 6,035 citations

94433 37 h-index 71685 **76** g-index

85 all docs 85 docs citations

85 times ranked 8403 citing authors

#	Article	IF	CITATIONS
1	Intravesical delivery of <i>KDM6A</i> -mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	87
2	An in Silico Approach to Reveal the Nanodisc Formulation of Doxorubicin. Frontiers in Bioengineering and Biotechnology, 2022, 10, 859255.	4.1	4
3	Editorial: The Application of Nanoengineering in Advanced Drug Delivery and Translational Research. Frontiers in Bioengineering and Biotechnology, 2022, 10, 886109.	4.1	1
4	Transforming a clinical fluorescent dye to sense and treat iron overload disorders: a new reverse translational approach in precision medicine. Quantitative Imaging in Medicine and Surgery, 2022, 12, 3020-3023.	2.0	1
5	Melittin Tryptophan Substitution with a Fluorescent Amino Acid Reveals the Structural Basis of Selective Antitumor Effect and Subcellular Localization in Tumor Cells. Toxins, 2022, 14, 428.	3.4	8
6	Nano–Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Accounts of Chemical Research, 2021, 54, 291-301.	15.6	95
7	Bridging the preoperative gap of precision hepatectomy: Superstable homogeneous iodinated formulation technology. Journal of Interventional Medicine, 2021, 4, 8-10.	0.5	1
8	Structural Transformative Antioxidants for Dualâ€Responsive Antiâ€Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angewandte Chemie, 2021, 133, 14579-14587.	2.0	4
9	Structural Transformative Antioxidants for Dualâ€Responsive Antiâ€Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angewandte Chemie - International Edition, 2021, 60, 14458-14466.	13.8	43
10	Editorial: Emerging Advances in Bio-Nano Engineered Approaches Toward Intelligent Nanomedicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 703227.	4.1	1
11	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3447-3464.	12.0	35
12	Tumor Microenvironment-Specific Chemical Internalization for Enhanced Gene Therapy of Metastatic Breast Cancer. Research, 2021, 2021, .	5.7	10
13	De novo Design of G Protein-Coupled Receptor 40 Peptide Agonists for Type 2 Diabetes Mellitus Based on Artificial Intelligence and Site-Directed Mutagenesis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 694100.	4.1	5
14	Siteâ€Specific Biomimicry of Antioxidative Melanin Formation and Its Application for Acute Liver Injury Therapy and Imaging. Advanced Materials, 2021, 33, e2102391.	21.0	38
15	Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Advanced Science, 2021, 8, e2100460.	11.2	34
16	Engineering the surface of Gd2O3 nanoplates for improved T1-weighted magnetic resonance imaging. Chemical Engineering Journal, 2020, 380, 122473.	12.7	20
17	Oxidative stress-driven DR5 upregulation restores TRAIL/Apo2L sensitivity induced by iron oxide nanoparticles in colorectal cancer. Biomaterials, 2020, 233, 119753.	11.4	32
18	Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Research, 2020, 13, 238-245.	10.4	42

#	Article	IF	Citations
19	Sonoactivated Nanoantimicrobials: A Potent Armament in the Postantibiotic Era. ACS Applied Bio Materials, 2020, 3, 7255-7264.	4.6	5
20	An ultra-long circulating nanoparticle for reviving a highly selective BCR-ABL inhibitor in long-term effective and safe treatment of chronic myeloid leukemia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102283.	3.3	1
21	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 19787-19795.	13.8	88
22	siRNA nanoparticles targeting CaMKII \hat{l}^3 in lesional macrophages improve atherosclerotic plaque stability in mice. Science Translational Medicine, 2020, 12, .	12.4	132
23	Lipidation Approaches Potentiate Adjuvant-Pulsed Immune Surveillance: A Design Rationale for Cancer Nanovaccine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 787.	4.1	11
24	In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 , $28667-28677$.	7.1	244
25	Rücktitelbild: Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren (Angew. Chem. 45/2020). Angewandte Chemie, 2020, 132, 20424-20424.	2.0	1
26	Plattformen f $\tilde{A}\frac{1}{4}$ r die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angewandte Chemie, 2020, 132, 19955-19964.	2.0	5
27	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Letters, 2020, 20, 4857-4863.	9.1	42
28	Mimovirus Vesicleâ€Based Biological Orthogonal Reaction for Cancer Diagnosis. Small Methods, 2020, 4, 2000291.	8.6	19
29	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	9.1	158
30	Rational engineering of ferritin nanocages for targeted therapy of osteoarthritis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102210.	3.3	15
31	Melaninâ€Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. Advanced Science, 2020, 7, 1903129.	11.2	113
32	Fe(III)â€Porphyrin Sonotheranostics: A Green Tripleâ€Regulated ROS Generation Nanoplatform for Enhanced Cancer Imaging and Therapy. Advanced Functional Materials, 2019, 29, 1904056.	14.9	111
33	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	14.9	74
34	<i>In Situ</i> Manipulation of Dendritic Cells by an Autophagy-Regulative Nanoactivator Enables Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 7568-7577.	14.6	55
35	A single-step multi-level supramolecular system for cancer sonotheranostics. Nanoscale Horizons, 2019, 4, 190-195.	8.0	71
36	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	38.1	482

#	Article	IF	Citations
37	Genetically Engineered Cell Membrane Nanovesicles for Oncolytic Adenovirus Delivery: A Versatile Platform for Cancer Virotherapy. Nano Letters, 2019, 19, 2993-3001.	9.1	115
38	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano, 2019, 13, 4876-4882.	14.6	77
39	Peptide-Based Autophagic Gene and Cisplatin Co-delivery Systems Enable Improved Chemotherapy Resistance. Nano Letters, 2019, 19, 2968-2978.	9.1	81
40	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes $\langle i \rangle$ p53 $\langle i \rangle$ -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	12.4	177
41	Comprehensive insights into intracellular fate of WS ₂ nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics, 2019, 8, 2331-2346.	6.0	16
42	Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS Nano, 2019, 13, 357-370.	14.6	204
43	Metal–Organic Frameworkâ€Based Stimuliâ€Responsive Systems for Drug Delivery. Advanced Science, 2019, 6, 1801526.	11.2	491
44	Imaging Nano–Bio Interactions in the Kidney: Toward a Better Understanding of Nanoparticle Clearance. Angewandte Chemie - International Edition, 2018, 57, 3008-3010.	13.8	81
45	Eumelanin–Fe ₃ O ₄ hybrid nanoparticles for enhanced MR/PA imaging-assisted local photothermolysis. Biomaterials Science, 2018, 6, 586-595.	5.4	19
46	Polysaccharideâ€Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. Advanced Science, 2018, 5, 1700513.	11,2	226
47	Biomimetic synthesis of nanovesicles for targeted drug delivery. Science Bulletin, 2018, 63, 663-665.	9.0	12
48	Bildgebung von Nanoâ€Bioâ€Interaktionen in der Niere: Fýr ein besseres Verstädnis der Nanopartikelâ€Clearance. Angewandte Chemie, 2018, 130, 3060-3062.	2.0	0
49	Gold nanorods@metal-organic framework core-shell nanostructure as contrast agent for photoacoustic imaging and its biocompatibility. Journal of Alloys and Compounds, 2018, 748, 193-198.	5.5	42
50	NanoTRAILâ€Oncology: A Strategic Approach in Cancer Research and Therapy. Advanced Healthcare Materials, 2018, 7, e1800053.	7.6	9
51	Size-Controlled Biocompatible Silver Nanoplates for Contrast-Enhanced Intravital Photoacoustic Mapping of Tumor Vasculature. Journal of Biomedical Nanotechnology, 2018, 14, 1448-1457.	1.1	14
52	Functional probes for cardiovascular molecular imaging. Quantitative Imaging in Medicine and Surgery, 2018, 8, 838-852.	2.0	14
53	Cancer Theranostics: Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). Advanced Materials, 2018, 30, 1870283.	21.0	3
54	Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration. Journal of the American Chemical Society, 2018, 140, 14980-14989.	13.7	180

#	Article	IF	CITATIONS
55	Pulsed Magnetic Field Stimuli Can Promote Chondrogenic Differentiation of Superparamagnetic Iron Oxide Nanoparticles-Labeled Mesenchymal Stem Cells in Rats. Journal of Biomedical Nanotechnology, 2018, 14, 2135-2145.	1.1	14
56	Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and Technology of Advanced Materials, 2018, 19, 771-790.	6.1	49
57	Cancer Theranostics: A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870268.	21.0	4
58	Enzyme-responsive polymers for drug delivery and molecular imaging., 2018,, 101-119.		6
59	Icariin Activates Autophagy via Down-Regulation of the NF-κB Signaling-Mediated Apoptosis in Chondrocytes. Frontiers in Pharmacology, 2018, 9, 605.	3 . 5	63
60	Advancing the Pharmaceutical Potential of Bioinorganic Hybrid Lipidâ€Based Assemblies. Advanced Science, 2018, 5, 1800564.	11.2	15
61	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	21.0	314
62	Magnetosome Modification: From Bioâ€Nano Engineering Toward Nanomedicine. Advanced Therapeutics, 2018, 1, 1800080.	3.2	12
63	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	21.0	318
64	Theranostic Magnetic Nanoparticles as Molecular Imaging Agents for siRNA Delivery., 2018,, 551-576.		1
65	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Letters, 2018, 18, 4618-4625.	9.1	173
66	Tumor Microenvironment‶riggered Supramolecular System as an In Situ Nanotheranostic Generator for Cancer Phototherapy. Advanced Materials, 2017, 29, 1605928.	21.0	222
67	Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomaterials Science, 2017, 5, 1512-1516.	5.4	40
68	Phototherapy: Tumor Microenvironmentâ€Triggered Supramolecular System as an In Situ Nanotheranostic Generator for Cancer Phototherapy (Adv. Mater. 23/2017). Advanced Materials, 2017, 29, .	21.0	1
69	Engineering Phototheranostic Nanoscale Metal–Organic Frameworks for Multimodal Imaging-Guided Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2040-2051.	8.0	278
70	Cell-surface cascaded landing location for nanotheranostics. Chinese Chemical Letters, 2017, 28, 1799-1800.	9.0	13
71	Gadolinium hybrid iron oxide nanocomposites for dual T ₁ - and T ₂ -weighted MR imaging of cell labeling. Biomaterials Science, 2017, 5, 50-56.	5.4	18
72	Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics, 2017, 7, 3915-3919.	10.0	48

#	Article	IF	CITATIONS
73	Intelligent Albumin-Stabilized Manganese Dioxide Nanocomposites for Tumor Microenvironment Responsive Phototherapy. Journal of Biomedical Nanotechnology, 2017, 13, 1321-1332.	1.1	12
74	Increased low back pain prevalence in females than in males after menopause age: evidences based on synthetic literature review. Quantitative Imaging in Medicine and Surgery, 2016, 6, 199-206.	2.0	157
75	Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. Archives of Virology, 2016, 161, 2103-2116.	2.1	15
76	Imaging-guided delivery of RNAi for anticancer treatment. Advanced Drug Delivery Reviews, 2016, 104, 44-60.	13.7	102
77	InÂvivo three-dimensional magnetic resonance imaging of rat knee osteoarthritis model induced using meniscal transection. Journal of Orthopaedic Translation, 2015, 3, 134-141.	3.9	8
78	Neprilysin gene transfer: A promising therapeutic approach for <scp>A</scp> lzheimer's disease. Journal of Neuroscience Research, 2015, 93, 1325-1329.	2.9	24
79	A simple and controllable hydrothermal route for the synthesis of monodispersed cube-like barium titanate nanocrystals. Ceramics International, 2015, 41, 4514-4522.	4.8	15
80	High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios. Langmuir, 2015, 31, 8063-8073.	3.5	175
81	Preparation and luminescent properties of GdOF:Ce, Tb nanoparticles and their transparent PMMA nanocomposites. Optical Materials, 2015, 43, 36-41.	3.6	15
82	Opportunities and Challenges of Fluorescent Carbon Dots in Translational Optical Imaging. Current Pharmaceutical Design, 2015, 21, 5401-5416.	1.9	61
83	Exponential growth of publications on carbon nanodots by Chinese authors. Journal of Thoracic Disease, 2015, 7, E201-5.	1.4	10