Marta Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745980/publications.pdf

Version: 2024-02-01

361413 1,139 39 20 citations h-index papers

g-index 42 42 42 1517 docs citations citing authors all docs times ranked

414414

32

#	Article	IF	CITATIONS
1	Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. The Lancet Regional Health Americas, 2022, 9, 100169.	2.6	14
2	Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasites and Vectors, 2022, 15, 106.	2.5	2
3	Insights into Plasmodium vivax Asymptomatic Malaria Infections and Direct Skin-Feeding Assays to Assess Onward Malaria Transmission in the Amazon. American Journal of Tropical Medicine and Hygiene, 2022, 107, 154-161.	1.4	3
4	Temporal and Microspatial Heterogeneity in Transmission Dynamics of Coendemic <i>Plasmodium vivax</i> and <i>Plasmodium falciparum</i> in Two Rural Cohort Populations in the Peruvian Amazon. Journal of Infectious Diseases, 2021, 223, 1466-1477.	4.0	8
5	Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PLoS ONE, 2021, 16, e0246215.	2.5	5
6	Maintaining Plasmodium falciparum gametocyte infectivity during blood collection and transport for mosquito feeding assays in the field. Malaria Journal, 2021, 20, 191.	2.3	9
7	Integrating Parasitological and Entomological Observations to Understand Malaria Transmission in Riverine Villages in the Peruvian Amazon. Journal of Infectious Diseases, 2021, 223, S99-S110.	4.0	9
8	Infectivity of patent <i>Plasmodium falciparum</i> gametocyte carriers to mosquitoes: establishing capacity to investigate the infectious reservoir of malaria in a low-transmission setting in The Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 1462-1467.	1.8	7
9	Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon. Parasites and Vectors, 2019, 12, 374.	2.5	29
10	Brazil's first free-mating laboratory colony of Nyssorhynchus darlingi. Revista Da Sociedade Brasileira De Medicina Tropical, 2019, 52, e20190159.	0.9	22
11	Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. Nature Communications, 2019, 10, 488.	12.8	45
12	High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Neglected Tropical Diseases, 2019, 13, e0007105.	3.0	67
13	Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Neglected Tropical Diseases, 2019, 13, e0007412.	3.0	22
14	Continuous Supply of <i>Plasmodium vivax</i> Sporozoites from Colonized <i>Anopheles darlingi</i> in the Peruvian Amazon. ACS Infectious Diseases, 2018, 4, 541-548.	3.8	12
15	Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-lquitos, Amazonian Peru. Malaria Journal, 2018, 17, 86.	2.3	32
16	DevelopingPlasmodium vivaxResources for Liver Stage Study in the Peruvian Amazon Region. ACS Infectious Diseases, 2018, 4, 531-540.	3.8	9
17	Nyssorhynchus dunhami: bionomics and natural infection by Plasmodium falciparum and P. vivax in the Peruvian Amazon. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180380.	1.6	15
18	Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Neglected Tropical Diseases, 2017, 11, e0005337.	3.0	35

#	Article	IF	Citations
19	Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1200-1207.	1.4	16
20	Epidemiology of <i>Plasmodium vivax</i> Malaria in Peru. American Journal of Tropical Medicine and Hygiene, 2016, 95, 133-144.	1.4	61
21	Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malaria Journal, 2015, 14, 375.	2.3	33
22	Implications for changes in Anopheles darlingi biting behaviour in three communities in the peri-lquitos region of Amazonian Peru. Malaria Journal, 2015, 14, 290.	2.3	44
23	A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivaxandPlasmodium falciparum infection in field-collected anophelines. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 573-576.	1.6	17
24	Changes in Genetic Diversity from Field to Laboratory During Colonization of Anopheles darlingi Root (Diptera: Culicidae). American Journal of Tropical Medicine and Hygiene, 2015, 93, 998-1001.	1.4	28
25	Insecticide Resistance in Areas Under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination. American Journal of Tropical Medicine and Hygiene, 2015, 93, 69-78.	1.4	38
26	Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. American Journal of Tropical Medicine and Hygiene, 2015, 93, 28-41.	1.4	27
27	Demographic history and population structure of Anopheles pseudopunctipennis in Argentina based on the mitochondrial COI gene. Parasites and Vectors, 2014, 7, 423.	2.5	5
28	Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax. American Journal of Tropical Medicine and Hygiene, 2014, 90, 612-616.	1.4	50
29	Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns. Parasites and Vectors, 2013, 6, 47.	2.5	21
30	Molecular Taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and Malaria Epidemiology in Southern Amazonian Peru. American Journal of Tropical Medicine and Hygiene, 2013, 88, 319-324.	1.4	10
31	Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 605-615.	1.6	7
32	New Insights into the Population Structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands Revealed by Herves Transposable Elements. PLoS ONE, 2013, 8, e62964.	2.5	8
33	Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Tropica, 2012, 121, 281-291.	2.0	120
34	Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malaria Journal, 2010, 9, 127.	2.3	84
35	Genetic population structure of Anopheles gambiae in Equatorial Guinea. Malaria Journal, 2007, 6, 137.	2.3	37
36	Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae. PLoS ONE, 2007, 2, e1243.	2.5	108

3

Marta Moreno

#	Article	IF	CITATIONS
37	Spatial variability in the density, distribution and vectorial capacity of anopheline species in a high transmission village (Equatorial Guinea). Malaria Journal, 2006, 5, 21.	2.3	41
38	Experimental infection of immunomodulated NOD/LtSz-SCID mice as a new model for Plasmodium falciparum erythrocytic stages. Parasitology Research, 2005, 95, 97-105.	1.6	17
39	Malaria Panel Assay versus PCR: detection of naturally infected Anopheles melas in a coastal village of Equatorial Guinea. Malaria Journal, 2004, 3, 20.	2.3	22