Christopher J Helal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745822/publications.pdf

Version: 2024-02-01

304743 454955 1,564 29 22 30 citations h-index g-index papers 32 32 32 2201 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science, 2018, 359, 429-434.	12.6	292
2	Design and Selection Parameters to Accelerate the Discovery of Novel Central Nervous System Positron Emission Tomography (PET) Ligands and Their Application in the Development of a Novel Phosphodiesterase 2A PET Ligand. Journal of Medicinal Chemistry, 2013, 56, 4568-4579.	6.4	172
3	Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5521-5525.	2.2	95
4	Introduction of a Crystalline, Shelf-Stable Reagent for the Synthesis of Sulfur(VI) Fluorides. Organic Letters, 2018, 20, 812-815.	4.6	91
5	Current Landscape of Phosphodiesterase 10A (PDE10A) Inhibition. Journal of Medicinal Chemistry, 2012, 55, 7299-7331.	6.4	88
6	Design and Discovery of 6-[(3 <i>S</i> ,4 <i>S</i>)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2 <i>H</i> -pyran-4-yl)-1,5-(PF-04447943), a Selective Brain Penetrant PDE9A Inhibitor for the Treatment of Cognitive Disorders. Journal of Medicinal Chemistry, 2012, 55, 9045-9054.	dihydro-4	<i>爿</i> -pyra:
7	Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy. Journal of Medicinal Chemistry, 2009, 52, 7946-7949.	6.4	67
8	Ru/Ni Dual Catalytic Desulfinative Photoredox C _{sp²} <fsub>–C_{sp³} Cross-Coupling of Alkyl Sulfinate Salts and Aryl Halides. Organic Letters, 2017, 19, 6566-6569.</fsub>	4.6	63
9	Discovery of Trifluoromethyl Glycol Carbamates as Potent and Selective Covalent Monoacylglycerol Lipase (MAGL) Inhibitors for Treatment of Neuroinflammation. Journal of Medicinal Chemistry, 2018, 61, 3008-3026.	6.4	58
10	Application of Structure-Based Drug Design and Parallel Chemistry to Identify Selective, Brain Penetrant, In Vivo Active Phosphodiesterase 9A Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 9055-9068.	6.4	50
11	Use of Structure-Based Design to Discover a Potent, Selective, In Vivo Active Phosphodiesterase 10A Inhibitor Lead Series for the Treatment of Schizophrenia. Journal of Medicinal Chemistry, 2011, 54, 4536-4547.	6.4	47
12	Highâ€Throughput Ligand Screening Enables the Enantioselective Conjugate Borylation of Cyclobutenones to Access Synthetically Versatile Tertiary Cyclobutylboronates. Angewandte Chemie - International Edition, 2019, 58, 18405-18409.	13.8	47
13	Synthetic Approaches to the New Drugs Approved During 2017. Journal of Medicinal Chemistry, 2019, 62, 7340-7382.	6.4	44
14	Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5703-5707.	2.2	40
15	Discovery and Lead Optimization of Atropisomer D1 Agonists with Reduced Desensitization. Journal of Medicinal Chemistry, 2018, 61, 11384-11397.	6.4	36
16	Synthetic Approaches to New Drugs Approved during 2018. Journal of Medicinal Chemistry, 2020, 63, 10652-10704.	6.4	33
17	Late-Stage Microsomal Oxidation Reduces Drug–Drug Interaction and Identifies Phosphodiesterase 2A Inhibitor PF-06815189. ACS Medicinal Chemistry Letters, 2018, 9, 68-72.	2.8	31
18	Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor. Journal of Medicinal Chemistry, 2017, 60, 5673-5698.	6.4	27

#	Article	IF	CITATIONS
19	A Concise and Regioselective Synthesis of 1-Alkyl-4-imidazolecarboxylates. Organic Letters, 2002, 4, 4133-4134.	4.6	26
20	Stereoselective Synthesis ofcis-1,3-Disubstituted Cyclobutyl Kinase Inhibitors. Organic Letters, 2004, 6, 1853-1856.	4.6	24
21	The Discovery of a Novel Phosphodiesterase (PDE) 4B-Preferring Radioligand for Positron Emission Tomography (PET) Imaging. Journal of Medicinal Chemistry, 2017, 60, 8538-8551.	6.4	24
22	Identification of a Potent, Highly Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor Clinical Candidate. Journal of Medicinal Chemistry, 2018, 61, 1001-1018.	6.4	23
23	Catalytic Enantioselective Synthesis of a <i>cis</i> -β-Boronyl Cyclobutylcarboxyester Scaffold and Its Highly Diastereoselective Nickel/Photoredox Dual-Catalyzed Csp ³ –Csp ² Cross-Coupling to Access Elusive <i>trans</i> -β-Aryl/Heteroaryl Cyclobutylcarboxyesters. ACS Catalysis. 2021. 11. 404-413.	11.2	23
24	Quick Building Blocks (QBB): An Innovative and Efficient Business Model To Speed Medicinal Chemistry Analog Synthesis. ACS Medicinal Chemistry Letters, 2019, 10, 1104-1109.	2.8	18
25	Discovery of cyclopropyl chromane-derived pyridopyrazine-1,6-dione \hat{l}^3 -secretase modulators with robust central efficacy. MedChemComm, 2017, 8, 730-743.	3.4	16
26	Highâ€Throughput Ligand Screening Enables the Enantioselective Conjugate Borylation of Cyclobutenones to Access Synthetically Versatile Tertiary Cyclobutylboronates. Angewandte Chemie, 2019, 131, 18576-18580.	2.0	15
27	Preclinical Evaluation of ¹⁸ F-PF-05270430, a Novel PET Radioligand for the Phosphodiesterase 2A Enzyme. Journal of Nuclear Medicine, 2016, 57, 1448-1453.	5.0	13
28	Increased building block access through collaboration. Drug Discovery Today, 2018, 23, 1458-1462.	6.4	9
29	Parallel Synthesis of 1H-Pyrazolo[3,4-d]pyrimidines via Condensation of N-Pyrazolylamides and Nitriles. ACS Combinatorial Science, 2017, 19, 675-680.	3.8	6