Jorge DomÃ-nguez-Andrés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745817/publications.pdf

Version: 2024-02-01

47 papers

4,169 citations

279798 23 h-index 214800 47 g-index

56 all docs 56 docs citations

56 times ranked 5106 citing authors

#	Article	IF	CITATIONS
1	When platelets meet candidalysin: "We just Wnt to have fun― Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1927-1928.	5.7	O
2	Reply to: â€~Lack of evidence for intergenerational inheritance of immune resistance to infections'. Nature Immunology, 2022, 23, 208-209.	14.5	9
3	Natural resistance against infections: focus on COVID-19. Trends in Immunology, 2022, 43, 106-116.	6.8	17
4	Single-cell RNA sequencing reveals induction of distinct trained-immunity programs in human monocytes. Journal of Clinical Investigation, 2022, 132, .	8.2	36
5	Evolutionary Trajectories of Complex Traits in European Populations of Modern Humans. Frontiers in Genetics, 2022, 13, 833190.	2.3	2
6	Multi-Omics Integration Reveals Only Minor Long-Term Molecular and Functional Sequelae in Immune Cells of Individuals Recovered From COVID-19. Frontiers in Immunology, 2022, 13, 838132.	4.8	10
7	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	6.5	17
8	Trained immunity: implications for vaccination. Current Opinion in Immunology, 2022, 77, 102190.	5. 5	31
9	The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity, 2021, 54, 32-43.	14.3	134
10	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	14.5	274
11	InÂvitro induction of trained immunity in adherent human monocytes. STAR Protocols, 2021, 2, 100365.	1.2	42
12	Glutathione Metabolism Contributes to the Induction of Trained Immunity. Cells, 2021, 10, 971.	4.1	20
13	Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annual Review of Immunology, 2021, 39, 667-693.	21.8	146
14	The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Reports, 2021, 35, 108955.	6.4	40
15	Oncogene-induced maladaptive activation of trained immunity in the pathogenesis and treatment of Erdheim-Chester disease. Blood, 2021, 138, 1554-1569.	1.4	10
16	The Immunological Factors Predisposing to Severe Covid-19 Are Already Present in Healthy Elderly and Men. Frontiers in Immunology, 2021, 12, 720090.	4.8	9
17	Trained Immunity as a Preventive Measure for Surgical Site Infections. Clinical Microbiology Reviews, 2021, 34, e0004921.	13.6	10
18	Evolution of cytokine production capacity in ancient and modern European populations. ELife, 2021, 10,	6.0	15

#	Article	IF	Citations
19	Pulmonary BCG induces lung-resident macrophage activation and confers long-term protection against tuberculosis. Science Immunology, 2021, 6, eabc2934.	11.9	27
20	Limited role of the spleen in a mouse model of trained immunity: Impact on neutrophilia. Journal of Leukocyte Biology, 2021, , .	3.3	2
21	Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination. Cell Reports Medicine, 2021, 2, 100185.	6.5	41
22	Transmission of trained immunity and heterologous resistance to infections across generations. Nature Immunology, 2021, 22, 1382-1390.	14.5	72
23	Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathogens, 2021, 17, e1009928.	4.7	93
24	Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell, 2020, 183, 315-323.e9.	28.9	279
25	Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. International Immunology, 2020, 32, 741-753.	4.0	46
26	Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell, 2020, 181, 969-977.	28.9	358
27	Growth on Carbohydrates from Carbonaceous Meteorites Alters the Immunogenicity of Environment-Derived Bacterial Pathogens. Astrobiology, 2020, 20, 1353-1362.	3.0	3
28	The specifics of innate immune memory. Science, 2020, 368, 1052-1053.	12.6	15
29	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	22.7	1,345
30	Advances in understanding molecular regulation of innate immune memory. Current Opinion in Cell Biology, 2020, 63, 68-75.	5.4	51
31	Immune recognition of putative alien microbial structures: Host–pathogen interactions in the age of space travel. PLoS Pathogens, 2020, 16, e1008153.	4.7	7
32	The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by \hat{l}^2 -Glucan. Cell Reports, 2020, 31, 107548.	6.4	76
33	New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLoS Pathogens, 2020, 16, e1008404.	4.7	58
34	Designing the Next Generation of Vaccines: Relevance for Future Pandemics. MBio, 2020, 11, .	4.1	17
35	Long-term reprogramming of the innate immune system. Journal of Leukocyte Biology, 2019, 105, 329-338.	3.3	120
36	Bromodomain inhibitor lâ€BET151 suppresses immune responses during fungal–immune interaction. European Journal of Immunology, 2019, 49, 2044-2050.	2.9	23

#	Article	IF	CITATIONS
37	Metabolic Adaptation Sets the Fate of Regulatory Macrophages. Cell Metabolism, 2019, 29, 1240-1242.	16.2	2
38	Impact of Historic Migrations and Evolutionary Processes on Human Immunity. Trends in Immunology, 2019, 40, 1105-1119.	6.8	42
39	Induction of innate immune memory: the role of cellular metabolism. Current Opinion in Immunology, 2019, 56, 10-16.	5.5	109
40	The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism, 2019, 29, 211-220.e5.	16.2	232
41	Itaconate as an immune modulator. Aging, 2019, 11, 3898-3899.	3.1	6
42	Myeloid cell deficiency of p38 \hat{l}^3 /p38 \hat{l}^2 protects against candidiasis and regulates antifungal immunity. EMBO Molecular Medicine, 2018, 10, .	6.9	20
43	The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Frontiers in Immunology, 2018, 9, 31.	4.8	18
44	IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. Journal of Immunology, 2018, 201, 41-52.	0.8	16
45	Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation. Immunity, 2017, 46, 1059-1072.e4.	14.3	72
46	Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathogens, 2017, 13, e1006632.	4.7	73
47	Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. European Neuropsychopharmacology, 2015, 25, 2036-2048.	0.7	51