
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645-648.	27.8	4,203
2	Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 2014, 506, 328-333.	27.8	1,241
3	A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016, 540, 433-437.	27.8	617
4	Prediction of acute myeloid leukaemia risk in healthy individuals. Nature, 2018, 559, 400-404.	27.8	617
5	Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell, 2011, 20, 674-688.	16.8	546
6	Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017, 547, 104-108.	27.8	424
7	A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nature Medicine, 2018, 24, 352-359.	30.7	349
8	Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell, 2015, 27, 864-876.	16.8	265
9	AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood, 2015, 125, 2120-2130.	1.4	227
10	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
11	Organization and sequences of the variable, joining and constant region genes of the human T-cell receptor α-chain. Nature, 1985, 316, 837-840.	27.8	212
12	Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell, 2019, 35, 721-737.e9.	16.8	206
13	Increased Sensitivity of Acute Myeloid Leukemias to Lovastatin-Induced Apoptosis: A Potential Therapeutic Approach. Blood, 1999, 93, 1308-1318.	1.4	190
14	Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death. Cancer Research, 2015, 75, 2478-2488.	0.9	136
15	Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Experimental Hematology, 2014, 42, 247-251.	0.4	125
16	Rearrangements of T-cell receptor gene YT35 in human DNA from thymic leukaemia T-cell lines and functional T-cell clones. Nature, 1984, 311, 385-387.	27.8	117
17	Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	12.4	117
18	Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood, 2001, 98. 3541-3553.	1.4	116

#	Article	IF	CITATIONS
19	A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nature Medicine, 2022, 28, 1212-1223.	30.7	104
20	CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood, 2021, 137, 661-677.	1.4	103
21	Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). European Journal of Immunology, 1992, 22, 235-239.	2.9	102
22	Breakpoints in the human T-cell antigen receptor $\hat{I}\pm$ -chain locus in two T-cell leukaemia patients with chromosomal translocations. Nature, 1985, 317, 544-546.	27.8	96
23	Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nature Communications, 2017, 8, 1922.	12.8	89
24	GLI2 inhibition abrogates human leukemia stem cell dormancy. Journal of Translational Medicine, 2015, 13, 98.	4.4	80
25	Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Cell Stem Cell, 2019, 25, 639-653.e7.	11.1	79
26	Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production. Blood, 2021, 138, 234-245.	1.4	74
27	Sequence and organization of the human T cell δ chain gene. European Journal of Immunology, 1988, 18, 283-287.	2.9	73
28	Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. British Journal of Cancer, 2018, 118, 1425-1433.	6.4	72
29	Immediate Utility of Two Approved Agents to Target Both the Metabolic Mevalonate Pathway and Its Restorative Feedback Loop. Cancer Research, 2014, 74, 4772-4782.	0.9	64
30	Quality of life and physical function in adults treated with intensive chemotherapy for acute myeloid leukemia improve over time independent of age. Journal of Geriatric Oncology, 2015, 6, 262-271.	1.0	62
31	The human t cell receptor α-δlocus: a physical map of the variable, joining and constant region genes. European Journal of Immunology, 1988, 18, 641-644.	2.9	57
32	Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms. Clinical Cancer Research, 2018, 24, 370-382.	7.0	57
33	Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood, 2021, 137, 3518-3532.	1.4	55
34	Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nature Chemical Biology, 2015, 11, 401-408.	8.0	54
35	Outcomes and Predictors of Mortality for Patients with Acute Leukemia Admitted to the Intensive Care Unit. Canadian Respiratory Journal, 2016, 2016, 1-7.	1.6	51
36	Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell, 2021, 28, 1851-1867.e8.	11.1	43

#	Article	IF	CITATIONS
37	p53 Mutations, c-myc and bcl-2 Rearrangements in Human Non-Hodgkin's Lymphoma Cell Lines. Leukemia and Lymphoma, 1995, 19, 165-171.	1.3	40
38	An alternative pathway for expression of p56lck from type I promoter transcripts in colon carcinoma. Oncogene, 1997, 15, 2929-2937.	5.9	40
39	Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: 10â€Color flow cytometry diagnosis and HyperCVAD therapy. American Journal of Hematology, 2016, 91, 283-286.	4.1	40
40	Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1099-1108.	4.9	38
41	Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy. Journal of Experimental and Clinical Cancer Research, 2018, 37, 88.	8.6	33
42	The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Science Translational Medicine, 2020, 12, .	12.4	33
43	The Mitochondrial Transacylase, Tafazzin, Regulates AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell, 2019, 24, 621-636.e16.	11.1	32
44	Alternate Splicing Creates Two Forms of the Human Kit Protein. Leukemia and Lymphoma, 1994, 12, 441-447.	1.3	31
45	Detection of donor cell derived acute myelogenous leukaemia in a patient transplanted for chronic myelogenous leukaemia using fluorescence in situ hybridization. British Journal of Haematology, 1996, 93, 163-165.	2.5	31
46	Adverse prognostic effect of homozygous TET2 mutation on the relapse risk of acute myeloid leukemia in patients of normal karyotype. Haematologica, 2015, 100, e351-e353.	3.5	31
47	Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*. Molecular and Cellular Proteomics, 2015, 14, 695-706.	3.8	31
48	CD200 expression marks leukemia stem cells in human AML. Blood Advances, 2020, 4, 5402-5413.	5.2	31
49	Therapeutic Potential of Spleen Tyrosine Kinase Inhibition for Treating High-Risk Precursor B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 236ra62.	12.4	30
50	Organization and orientation of a human T cell receptor δ chain V gene segment that suggests an inversion mechanism is utilized in its rearrangement. European Journal of Immunology, 1989, 19, 571-574.	2.9	28
51	Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12332-12340.	7.1	28
52	NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia, 2020, 34, 1278-1290.	7.2	27
53	Normal karyotype acute myeloid leukemia patients with CEBPA double mutation have a favorable prognosis but no survival benefit from allogeneic stem cell transplant. Annals of Hematology, 2016, 95, 301-310.	1.8	26
54	Diminished AHR Signaling Drives Human Acute Myeloid Leukemia Stem Cell Maintenance. Cancer Research, 2019, 79, 5799-5811.	0.9	24

#	Article	IF	CITATIONS
55	A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia. Investigational New Drugs, 2016, 34, 614-624.	2.6	23
56	CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood, 2021, 137, 2171-2181.	1.4	23
57	The mitochondria target drug avocatin B synergizes with induction chemotherapeutics to induce leukemia cell death. Leukemia and Lymphoma, 2017, 58, 986-988.	1.3	21
58	ENMD-981693 Is an Orally-Active Kinase Inhibitor with Activity towards Human Hematologic Cancers In Vitro and In Vivo Blood, 2006, 108, 1377-1377.	1.4	20
59	Glucopsychosine increases cytosolic calcium to induce calpain-mediated apoptosis of acute myeloid leukemia cells. Cancer Letters, 2014, 348, 29-37.	7.2	18
60	CD16 ⁺ NK-92 and anti-CD123 monoclonal antibody prolongs survival in primary human acute myeloid leukemia xenografted mice. Haematologica, 2018, 103, 1720-1729.	3.5	18
61	Constitutive Production of the Interleukins IL-5 and IL-6 by the Lymphoma Cell Line OCI-Ly 17 Derived from a Patient with Malignant Lymphoma and Hypereosinophilia. Leukemia and Lymphoma, 1992, 8, 97-107.	1.3	17
62	Preclinical validation: LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16074.	4.1	17
63	B cell acute lymphoblastic leukemia cells mediate RANK-RANKL–dependent bone destruction. Science Translational Medicine, 2020, 12, .	12.4	17
64	Inhibitors of Stat5 protein signalling. MedChemComm, 2012, 3, 22-27.	3.4	16
65	MicroSPECT/CT imaging of primary human AML engrafted into the bone marrow and spleen of NOD/SCID mice using 111In-DTPA-NLS-CSL360 radioimmunoconjugates recognizing the CD123+/CD131â^' epitope expressed by leukemia stem cells. Leukemia Research, 2014, 38, 1367-1373.	0.8	16
66	An Integrated Analysis of Heterogeneous Drug Responses in Acute Myeloid Leukemia That Enables the Discovery of Predictive Biomarkers. Cancer Research, 2016, 76, 1214-1224.	0.9	16
67	Repression of LKB1 by miR-17â^1/492 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Reports Medicine, 2020, 1, 100014.	6.5	16
68	BAD Induces Apoptosis in Cells Over-Expressing Bcl-2 or Bcl-xL without Loss of Mitochondrial Membrane Potential. Leukemia and Lymphoma, 2001, 42, 429-443.	1.3	15
69	A radiolabeled antibody targeting CD123+ leukemia stem cells – initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML. Leukemia Research Reports, 2015, 4, 55-59.	0.4	15
70	Cryptic genomic lesions in adverse-risk acute myeloid leukemia identified by integrated whole genome and transcriptome sequencing. Leukemia, 2020, 34, 306-311.	7.2	14
71	Auger electron-emitting 111 In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123 + /CD131 â^' phenotype of leukemia stem cells. Applied Radiation and Isotopes, 2016, 110, 1-7.	1.5	13
72	A Phase I Trial of Two Sequence-Specific Schedules of Decitabine and Vorinostat in Patients with Acute Myeloid Leukemia (AML) Blood, 2007, 110, 908-908.	1.4	12

#	Article	IF	CITATIONS
73	<i>TET2</i> mutations as a part of DNA dioxygenase deficiency in myelodysplastic syndromes. Blood Advances, 2022, 6, 100-107.	5.2	12
74	Inflammatory Biomarkers, Hematopoietic Stem Cells, and Symptoms in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy. JNCI Cancer Spectrum, 2020, 4, pkaa037.	2.9	11
75	A clinical laboratory–developed LSC17 stemness score assay for rapid risk assessment of patients with acute myeloid leukemia. Blood Advances, 2022, 6, 1064-1073.	5.2	11
76	PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biology, 2022, 51, 102282.	9.0	11
77	Structure and rearrangement of the T cell receptor J alpha locus in T cells and leukemic T cell lines. European Journal of Immunology, 1988, 18, 1033-1038.	2.9	10
78	Prognostic impact of the adverse molecular-genetic profile on long-term outcomes following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Bone Marrow Transplantation, 2021, 56, 1908-1918.	2.4	10
79	Growth of Human Lymphoma Cells in SCID Mice. Leukemia and Lymphoma, 1992, 8, 129-136.	1.3	9
80	Statins Enhance the Molecular Response in Chronic Myeloid Leukemia when Combined with Tyrosine Kinase Inhibitors. Cancers, 2021, 13, 5543.	3.7	9
81	Acute myeloid leukemia with myelodysplasia-related changes diagnosed with multilineage dysplasia alone demonstrates a superior clinical outcome. Human Pathology, 2020, 104, 117-126.	2.0	8
82	The utility and safety of flexible bronchoscopy in critically ill acute leukemia patients: a retrospective cohort study. Canadian Journal of Anaesthesia, 2018, 65, 272-279.	1.6	7
83	A Novel Cereblon E3 Ligase Modulator Eradicates Acute Myeloid Leukemia Stem Cells through Degradation of Translation Termination Factor GSPT1. Blood, 2019, 134, 3940-3940.	1.4	7
84	Management of Hyperleukocytosis in Acute Myelogenous Leukemia Using Hydroxyurea Rather Than Leukopheresis Blood, 2006, 108, 2007-2007.	1.4	7
85	Impact of Gene Mutations on Overall Survival in Older Patients with Acute Myeloid Leukemia (AML) Treated with Azacitidine (AZA) or Conventional Care Regimens (CCR). Blood, 2016, 128, 2859-2859.	1.4	7
86	Outcomes of Adult Philadelphia Positive Acute Lymphoblastic Leukemia Patients Treated with Pediatric Multi-Agent Chemotherapy and Imatinib and the Impact of Residual Disease Monitoring on Survival. Blood, 2016, 128, 3976-3976.	1.4	7
87	Inhibiting the Mitochondrial Sulfhydryl Oxidase Alr Reduces Cox17 and Alters Mitochondrial Cristae Structure Leading to the Differentiation of AML and Stem Cells. Blood, 2017, 130, 881-881.	1.4	7
88	Predictors of outcome in adults with BCR-ABL negative acute lymphoblastic leukemia treated with a pediatric-based regimen. Leukemia Research, 2014, 38, 532-536.	0.8	6
89	Integration of intra-sample contextual error modeling for improved detection of somatic mutations from deep sequencing. Science Advances, 2020, 6, .	10.3	6
90	Loss of expression of both miR-15/16 loci in CML transition to blast crisis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6

#	Article	IF	CITATIONS
91	5-Hydroxymethylcytosine correlates with epigenetic regulatory mutations, but may not have prognostic value in predicting survival in normal karyotype acute myeloid leukemia. Oncotarget, 2017, 8, 8305-8314.	1.8	6
92	Pseudo-mutant P53 is a unique phenotype of <i>DNMT3A</i> -mutated pre-leukemia. Haematologica, 2022, 107, 2548-2561.	3.5	6
93	Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression. Experimental Hematology, 2019, 69, 27-36.	0.4	5
94	Structure–activity relationship of avocadyne. Food and Function, 2021, 12, 6323-6333.	4.6	5
95	Differential regulation of γ and δT cell antigen receptor gene expression by phorbol esters and Ca2+ ionophores in the acute lymphocyte leukemia DND41 cell line. European Journal of Immunology, 1991, 21, 2625-2628.	2.9	4
96	Chest CT scans are frequently abnormal in asymptomatic patients with newly diagnosed acute myeloid leukemia. Leukemia and Lymphoma, 2017, 58, 834-841.	1.3	4
97	The genomic and biological complexity of mixed phenotype acute leukemia. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 153-166.	6.1	4
98	Avocadoâ€derived avocadyne is a potent inhibitor of fatty acid oxidation. Journal of Food Biochemistry, 2022, 46, e13895.	2.9	4
99	Mir-125b Regulates the Self-Renewal of Acute Myeloid Leukemia Stem Cells through PTPN18 and GSK3. Blood, 2020, 136, 16-17.	1.4	4
100	An improved molecular inversion probe based targeted sequencing approach for low variant allele frequency. NAR Genomics and Bioinformatics, 2022, 4, lqab125.	3.2	4
101	SmMIP-tools: a computational toolset for processing and analysis of single-molecule molecular inversion probes-derived data. Bioinformatics, 2022, 38, 2088-2095.	4.1	4
102	KMT2E-ASNS: a novel relapse-specific fusion gene in early T-cell precursor acute lymphoblastic leukemia. Blood, 2017, 129, 1729-1732.	1.4	3
103	MicroRNA Expression Profiling in Sorted AML Subpopulations: A Possible Role for miR-155/BIC in Stem Cell Maintenance and Leukemogenesis Blood, 2005, 106, 466-466.	1.4	3
104	Novel Mango Ginger Bioactive (2,4,6-Trihydroxy-3,5-diprenyldihydrochalcone) Inhibits Mitochondrial Metabolism in Combination with Avocatin B. ACS Omega, 2022, 7, 1682-1693.	3.5	3
105	CPX351 Has Short Remission Duration but Is an Effective Bridge to Allogeneic Transplant in High Risk AML: Results from Canadian Real-World Multi-Centre Study. Blood, 2020, 136, 6-7.	1.4	3
106	Targeted blockade of immune mechanisms inhibit B precursor acute lymphoblastic leukemia cell invasion of the central nervous system. Cell Reports Medicine, 2021, 2, 100470.	6.5	3
107	Predictive value of molecular remissions postconsolidation chemotherapy in patients with Core Binding Factor Acute Myeloid Leukemia (CBFâ€AML) – a single center analysis. Hematological Oncology, 2017, 35, 810-813.	1.7	2
108	Stability of sodium bicarbonate injection 8.4% in syringes over a six-week period in refrigerated temperature. Journal of Oncology Pharmacy Practice, 2018, 24, 198-200.	0.9	2

#	Article	IF	CITATIONS
109	Octadecyloxyethyl Adefovir Exhibits Potent in vitro and in vivo Cytotoxic Activity and Has Synergistic Effects with Ara-C in Acute Myeloid Leukemia. Chemotherapy, 2018, 63, 225-237.	1.6	2
110	Acute promyelocytic leukemia in the intensive care unit: A retrospective analysis. Leukemia Research, 2018, 73, 41-43.	0.8	2
111	Combination of FLT3-ITD Allelic Ratio, NPM1 Mutation, and Immunophenotypic Markers to Modulate Outcome Prediction in Patients with Normal Karyotype Acute Myelogenous Leukemia Undergoing Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 1995-2000.	2.0	2
112	A Novel Predictor of Response to Gemtuzumab Ozogamicin Therapy in AML Provides Strategies for Sensitization of Leukemia Stem Cells in Individual Patients. Blood, 2018, 132, 2765-2765.	1.4	2
113	Preliminary Results from a Phase 1 Study of Cfi-400495, a PLK4 Inhibitor, in Patients with Acute Myeloid Leukemia and High Risk MDS. Blood, 2020, 136, 1-2.	1.4	2
114	SOCS2 Expression in AML: A Context Dependent Effect? Blood, 2007, 110, 4152-4152.	1.4	2
115	Azacitidine (AZA) Prolongs Overall Survival in Older Patients with Acute Myeloid Leukemia (AML) with Poor Prognostic Karyotypes Compared with Conventional Care Regimens (CCR). Blood, 2016, 128, 1638-1638.	1.4	2
116	Microrna-130a Regulates Hematopoietic Stem Cell Self-Renewal By Repressing Chromatin Modifiers and Shaping the Accessible Chromatin Landscape. Blood, 2018, 132, 3824-3824.	1.4	2
117	An Immune Senescence and Exhaustion-Related RNA Profile Predicts Clinical Outcomes in Acute Myeloid Leukemia. Blood, 2020, 136, 26-27.	1.4	2
118	The 17â€gene stemness score associates with relapse risk and longâ€ŧerm outcomes following allogeneic haematopoietic cell transplantation in acute myeloid leukaemia. EJHaem, 2022, 3, 873-884.	1.0	2
119	Shikonin impairs mitochondrial activity to selectively target leukemia cells. Phytomedicine Plus, 2022, 2, 100300.	2.0	2
120	Systemic mastocytosis with acute myeloid leukemia occurs from mutually exclusive clones expressing KITD816V and FLT3-ITD. Leukemia, 2021, 35, 282-285.	7.2	1
121	Nicotinamide Phosphoribosyltransferase Inhibitors Induce Apoptosis of AML Stem Cells through Dysregulation of Lipid Metabolism. Blood, 2020, 136, 25-26.	1.4	1
122	CD200 Is a Marker of LSC Activity in Acute Myeloid Leukemia. Blood, 2016, 128, 1705-1705.	1.4	1
123	Safety of using escalated doses of enoxaparin prophylaxis in adults with acute lymphoblastic leukemia receiving asparaginase-based intensification therapy Journal of Clinical Oncology, 2016, 34, 141-141.	1.6	1
124	Risk of Thrombosis in Adult Philadelphia-Positive ALL Treated with an Asparaginase-Free ALL Regimen. Current Oncology, 2021, 28, 128-137.	2.2	1
125	Efficacy and Safety of Azacitidine (AZA) Versus Conventional Care Regimens (CCR) in Patients Aged ≥75 Years with Acute Myeloid Leukemia (AML) in the Phase 3 AZA-AML-001 Study. Blood, 2016, 128, 2818-2818.	1.4	1
126	Single-Cell Proteogenomic Sequencing Allows Early Detection of Relapse Clone with CN-LOH at FLT3-ITD Locus from Initial Diagnosis in AML. Blood, 2021, 138, 3428-3428.	1.4	1

#	Article	IF	CITATIONS
127	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Blood, 2020, 136, 4-4.	1.4	1
128	Single cell proteogenomic sequencing identifies a relapseâ€fated AML subclone carrying <i>FLT3</i> â€ITD with CN‣OH at chr13q. EJHaem, 0, , .	1.0	1
129	Circulating late-stage erythrold progenitors in a patient with agnagenic myeloid metaplasia. American Journal of Hematology, 1994, 45, 194-195.	4.1	0
130	Dr. Ernest McCulloch. Stem Cells and Development, 2011, 20, 747-747.	2.1	0
131	Predictive phosphoproteomic signatures for midostaurin plus chemotherapy response in FLT3 mutant positive acute myeloid leukaemia Journal of Clinical Oncology, 2021, 39, 7019-7019.	1.6	Ο
132	Autologous Gamma-Delta T (GD-T) Cells in Acute Myeloid Leukemia (AML): Potential Immune Effector Cells for Minimal Disease? Blood, 2004, 104, 2538-2538.	1.4	0
133	Functional Assessment of the Mitochondrial Pathway of Caspase Activation in Patients with Acute Myeloid Leukemia (AML) Blood, 2004, 104, 2995-2995.	1.4	Ο
134	Silencing of Caspase 8 Expression in Leukemia Cells and Patient Samples Blood, 2004, 104, 2050-2050.	1.4	0
135	Dominant and Pharmacologically Sensitized ENU Mutagenesis Screens Uncover Novel Regulators of Hematopoiesis and Model Hematopoietic Disease Blood, 2005, 106, 1378-1378.	1.4	Ο
136	Induction of Transient Cytopenia To Analyze Hematopoiesis in Mutant Mice Blood, 2005, 106, 3158-3158.	1.4	0
137	Efficacy of SAR302503, a JAK2 Inhibitor, in the Treatment of a Primary Xenograft Model of Human Acute Myeloid Leukemia,. Blood, 2011, 118, 3624-3624.	1.4	Ο
138	High-Dose Cytarabine-Based Consolidation Shows Superior Results for Elderly AML Patients with Intermediate Risk Cytogenetics in First Complete Remission. Blood, 2012, 120, 3574-3574.	1.4	0
139	Targeting The Mitochondrial ClpP As a Novel Therapeutic Strategy For Acute Myeloid Leukemia. Blood, 2013, 122, 3937-3937.	1.4	Ο
140	Traumatic stress symptoms in patients with acute leukemia (AL) Journal of Clinical Oncology, 2014, 32, 9577-9577.	1.6	0
141	Gene Expression and Mutation Analysis (GEMA) –Guided Precision Medicine Targeting PARP1 to Induce Synthetic Lethality in DNA-PK –Deficient Quiescent and BRCA-Deficient Proliferating Leukemia Stem and Progenitor Cells. Blood, 2014, 124, 480-480.	1.4	Ο
142	A Novel Role for INPP4B in Haematopoiesis and Leukemia. Blood, 2016, 128, 1720-1720.	1.4	0
143	Leveraging Increased Nucleoside Kinase Activity to Selectively Deplete Mitochondrial DNA (mtDNA), Impair Oxidative Phosphorylation, and Target AML Cells. Blood, 2016, 128, 1573-1573.	1.4	0
144	INPP4B is a Biomarker of Poor Prognosis in AML Which is Associated with EVI1 Overexpression and a LSC Signature. Blood, 2016, 128, 3929-3929.	1.4	0

#	Article	IF	CITATIONS
145	A Novel Micro RNA Signature Identifies a Patient Subset with Poor Prognosis in Core Binding Factor AML. Blood, 2016, 128, 1686-1686.	1.4	О
146	Distribution and Impact of Comorbidities on Survival and Leukemic Transformation in Myeloproliferative Neoplasm (MPN)-Associated Myelofibrosis (MF). Blood, 2016, 128, 4264-4264.	1.4	0
147	Myelofibrosis Is Initiated and Sustained By Rare Multipotent Stem Cells. Blood, 2018, 132, 1790-1790.	1.4	Ο
148	The 17-Gene Leukemic Stemess Score Can Predict Treatment Outcomes Following Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. Blood, 2019, 134, 3299-3299.	1.4	0
149	HSCs Fated to Progress to Blast Phase Can be Detected in Myelofibrosis Patients Several Years Prior to Leukemic Transformation. Blood, 2019, 134, 1676-1676.	1.4	Ο
150	Proteomics and Phospho-Proteomics Reveal Predictive Signatures of Response and Mechanisms of Resistance to Midostaurin Plus Chemotherapy in FLT3 Mutant Positive Acute Myeloid Leukemia. Blood, 2021, 138, 3462-3462.	1.4	0
151	KDM6 Demethylases Integrate DNA Repair Gene Regulation: Loss of KDM6A Sensitizes AML to PARP Inhibition and Potentiates with BCL2 Blockade. Blood, 2021, 138, 25-25.	1.4	0
152	Inferior Outcomes with a High LSC17 Score Can be Improved with Flag-IDA. Blood, 2020, 136, 35-36.	1.4	0
153	Geographical Distance from Quaternary Treatment Center Does Not Impact Choice of Upfront Therapy, Clinical Trial Participation and Outcomes in Patients with Newly Diagnosed AML. Blood, 2020, 136, 15-16.	1.4	Ο
154	Elevated Expression of Mir-130a in t(8,21) AML Reinforces the Aberrant Molecular Program of AML1-ETO. Blood, 2020, 136, 41-42.	1.4	0
155	Prognostic Role of Multiparameter Flow Cytometry-Based Measurable Residual Disease Assessment in Patients with Acute Myeloid Leukemia Harboring DNMT3A/TET2/ASXL1 Mutation. Blood, 2020, 136, 8-9.	1.4	Ο
156	IPO11 Regulates the Nuclear Import of BZW1/2 and Is Necessary for AML Cells and Stem Cells. Blood, 2020, 136, 22-23.	1.4	0
157	The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness. Blood, 2020, 136, 1-2.	1.4	0
158	Preclinical Characterization of Cell-Based IL12 Immunotherapy Against Murine Acute Lymphoblastic Leukemia Using Intravital Imaging. Blood, 2020, 136, 25-25.	1.4	0