List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A tissue-selective estrogen complex as treatment of osteoporosis in experimental lupus. Lupus, 2022, 31, 143-154.	0.8	2
2	A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs. Journal of Endocrinology, 2022, 253, 75-84.	1.2	4
3	<scp>ERα</scp> Signaling in a Subset of <scp>CXCL12</scp> â€Abundant Reticular Cells Regulates Trabecular Bone in Mice. JBMR Plus, 2022, 6, .	1.3	1
4	Mild stimulatory effect of a probiotic mix on bone mass when treatment is initiated 1.5 weeks after ovariectomy in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E591-E597.	1.8	5
5	Acute fat loss does not affect bone mass. Scientific Reports, 2021, 11, 14177.	1.6	5
6	Pulsed administration for physiological estrogen replacement in mice. F1000Research, 2021, 10, 809.	0.8	5
7	Arginine site 264 in murine estrogen receptor-α is dispensable for the regulation of the skeleton. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E160-E168.	1.8	5
8	Immunoglobulin G complexes without sialic acids enhance osteoclastogenesis but do not affect arthritisâ€mediated bone loss. Scandinavian Journal of Immunology, 2021, 93, e13009.	1.3	10
9	Osteoporosis in a murine model of postmenopausal lupus. Lupus, 2020, 29, 58-66.	0.8	4
10	Phosphorylation site S122 in estrogen receptor α has a tissueâ€dependent role in female mice. FASEB Journal, 2020, 34, 15991-16002.	0.2	7
11	Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24986-24997.	3.3	14
12	Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB Journal, 2020, 34, 7118-7126.	0.2	7
13	The effects of estradiol are modulated in a tissue-specific manner in mice with inducible inactivation of ERα after sexual maturation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E646-E654.	1.8	4
14	Effects of the selective GPER1 agonist G1 on bone growth. Endocrine Connections, 2019, 8, 1302-1309.	0.8	8
15	Roles of activating functions 1 and 2 of estrogen receptor $\hat{I}\pm$ in lymphopoiesis. Journal of Endocrinology, 2018, 236, 99-109.	1.2	9
16	Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. Journal of Endocrinology, 2018, 237, 113-122.	1.2	32
17	Increased bone mass in a mouse model with low fat mass. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1274-E1285.	1.8	2
18	ERα expression in T lymphocytes is dispensable for estrogenic effects in bone. Journal of Endocrinology, 2018, 238, 129-136.	1.2	7

#	Article	IF	CITATIONS
19	Membrane estrogen receptor $\hat{I}\pm$ is essential for estrogen signaling in the male skeleton. Journal of Endocrinology, 2018, 239, 303-312.	1.2	12
20	Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1. Journal of Molecular Endocrinology, 2017, 58, 105-111.	1.1	7
21	Regulation of bone growth via ligand-specific activation of estrogen receptor alpha. Journal of Endocrinology, 2017, 232, 403-410.	1.2	21
22	The role of membrane ERα signaling in bone and other major estrogen responsive tissues. Scientific Reports, 2016, 6, 29473.	1.6	51
23	Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology, 2016, 157, 969-977.	1.4	20
24	Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass. Endocrinology, 2016, 157, 3242-3252.	1.4	28
25	SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E912-E918.	1.8	20
26	The bone-sparing effects of estrogen and WNT16 are independent of each other. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14972-14977.	3.3	50
27	Trabecular bone loss in collagen antibody-induced arthritis. Arthritis Research and Therapy, 2015, 17, 189.	1.6	10
28	Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry. Endocrinology, 2015, 156, 2492-2502.	1.4	246
29	Estrogen regulates T helper 17 phenotype and localization in experimental autoimmune arthritis. Arthritis Research and Therapy, 2015, 17, 32.	1.6	47
30	IL-17-producing γÎT cells are regulated by estrogen during development of experimental arthritis. Clinical Immunology, 2015, 161, 324-332.	1.4	33
31	The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1180-1185.	3.3	40
32	The effect of estrogen on bone requires ERα in nonhematopoietic cells but is enhanced by ERα in hematopoietic cells. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E589-E595.	1.8	16
33	Role of Androgen and Estrogen Receptors for the Action of Dehydroepiandrosterone (DHEA). Endocrinology, 2014, 155, 889-896.	1.4	17
34	Sex Steroid Actions in Male Bone. Endocrine Reviews, 2014, 35, 906-960.	8.9	239
35	The role of total and cartilage-specific estrogen receptor alpha expression for the ameliorating effect of estrogen treatment on arthritis. Arthritis Research and Therapy, 2014, 16, R150.	1.6	28
36	The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cellular and Molecular Life Sciences, 2013, 70, 4023-4037.	2.4	85

3

#	Article	IF	CITATIONS
37	Periarticular Bone Loss in Antigenâ€Induced Arthritis. Arthritis and Rheumatism, 2013, 65, 2857-2865.	6.7	22
38	Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2294-2299.	3.3	118
39	Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. Journal of Bone and Mineral Research, 2013, 28, 291-301.	3.1	87
40	The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice. Journal of Bone and Mineral Research, 2013, 28, 1117-1126.	3.1	23
41	The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1381-E1389.	1.8	39
42	Exosomal secretion of death bullets: a new way of apoptotic escape?. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1015-E1024.	1.8	12
43	Estrogen receptor-α expression in neuronal cells affects bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 983-988.	3.3	37
44	Estradiol ameliorates arthritis and protects against systemic bone loss in Staphylococcus aureus infection in mice. Arthritis Research and Therapy, 2012, 14, R76.	1.6	8
45	The gut microbiota regulates bone mass in mice. Journal of Bone and Mineral Research, 2012, 27, 1357-1367.	3.1	585
46	Combined treatment with dexamethasone and raloxifene totally abrogates osteoporosis and joint destruction in experimental postmenopausal arthritis. Arthritis Research and Therapy, 2011, 13, R96.	1.6	14
47	Estrogens in rheumatoid arthritis; the immune system and bone. Molecular and Cellular Endocrinology, 2011, 335, 14-29.	1.6	100
48	Effects of oestradiol and raloxifene on the induction and effector phases of experimental postmenopausal arthritis and secondary osteoporosis. Clinical and Experimental Immunology, 2011, 165, 121-129.	1.1	11
49	Roles of transactivating functions 1 and 2 of estrogen receptor- \hat{l} ± in bone. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6288-6293.	3.3	88
50	Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice. PLoS ONE, 2011, 6, e21402.	1.1	46
51	Role of endogenous and exogenous female sex hormones in arthritis and osteoporosis development in B10.Q-ncf1*/* mice with collagen-induced chronic arthritis. BMC Musculoskeletal Disorders, 2010, 11, 284.	0.8	10
52	The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. Journal of Bone and Mineral Research, 2010, 25, 2690-2700.	3.1	70
53	Amelioration of collagenâ€induced arthritis and immuneâ€associated bone loss through signaling via estrogen receptor α, and not estrogen receptor β or G protein–coupled receptor 30. Arthritis and Rheumatism, 2010, 62, 524-533.	6.7	41
54	In vivo activation of gene transcription via oestrogen response elements by a raloxifene analogue. Journal of Endocrinology, 2009, 203, 349-356.	1.2	6

#	Article	IF	CITATIONS
55	The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E490-E496.	1.8	96
56	Elevated Aromatase Expression in Osteoblasts Leads to Increased Bone Mass Without Systemic Adverse Effects. Journal of Bone and Mineral Research, 2009, 24, 1263-1270.	3.1	41
57	Long-term anti-arthritic and anti-osteoporotic effects of raloxifene in established experimental postmenopausal polyarthritis. Clinical and Experimental Immunology, 2008, 152, 593-597.	1.1	22
58	Liver-derived IGF1 enhances the androgenic response in prostate. Journal of Endocrinology, 2008, 199, 489-497.	1.2	15
59	Identification of Target Cells for the Genomic Effects of Estrogens in Bone. Endocrinology, 2007, 148, 5688-5695.	1.4	25
60	Role of raloxifene as a potent inhibitor of experimental postmenopausal polyarthritis and osteoporosis. Arthritis and Rheumatism, 2007, 56, 3261-3270.	6.7	39
61	17β-Estradiol Expands IgA-Producing B Cells in Mice Deficient for the μ Chain. Scandinavian Journal of Immunology, 2007, 67, 071117034935001-???.	1.3	9
62	Liver-derived IGF-I is permissive for ovariectomy-induced trabecular bone loss. Bone, 2006, 38, 85-92.	1.4	38
63	Dihydrotestosterone Treatment Results in Obesity and Altered Lipid Metabolism in Orchidectomized Mice. Obesity, 2006, 14, 662-672.	1.5	92
64	Estren promotes androgen phenotypes in primary lymphoid organs and submandibular glands. BMC Immunology, 2005, 6, 16.	0.9	9
65	Investigation of central versus peripheral effects of estradiol in ovariectomized mice. Journal of Endocrinology, 2005, 187, 303-309.	1.2	22
66	Increased adipogenesis in bone marrow but decreased bone mineral density in mice devoid of thyroid hormone receptors. Bone, 2005, 36, 607-616.	1.4	57
67	Estrogen increases coagulation factor V mRNA levels via both estrogen receptor-alpha and -beta in murine bone marrow/bone. European Journal of Endocrinology, 2004, 151, 259-263.	1.9	13
68	Androgens and Bone. Endocrine Reviews, 2004, 25, 389-425.	8.9	611
69	Estrogen Receptor-β Inhibits Skeletal Growth and Has the Capacity to Mediate Growth Plate Fusion in Female Mice. Journal of Bone and Mineral Research, 2003, 19, 72-77.	3.1	89
70	Estrogen Receptor (ER)-β Reduces ERα-Regulated Gene Transcription, Supporting a "Ying Yang― Relationship between ERα and ERβ in Mice. Molecular Endocrinology, 2003, 17, 203-208.	3.7	433
71	Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. Journal of Endocrinology, 2002, 174, 167-178.	1.2	161
72	Raloxifene- and estradiol-mediated effects on uterus, bone and B lymphocytes in mice. Journal of Endocrinology, 2002, 175, 319-327.	1.2	161

#	Article	IF	CITATIONS
73	Estrogen Receptor α, but not Estrogen Receptor β, is Involved in the Regulation of the Hair Follicle Cycling as well as the Thickness of Epidermis in Male Mice. Journal of Investigative Dermatology, 2002, 119, 1053-1058.	0.3	60
74	Identification of Estrogen-Regulated Genes of Potential Importance for the Regulation of Trabecular Bone Mineral Density. Journal of Bone and Mineral Research, 2002, 17, 2183-2195.	3.1	36
75	Two Different Pathways for the Maintenance of Trabecular Bone in Adult Male Mice. Journal of Bone and Mineral Research, 2002, 17, 555-562.	3.1	69
76	Repeated in vivo determinations of bone mineral density during parathyroid hormone treatment in ovariectomized mice. Journal of Endocrinology, 2001, 170, 529-537.	1.2	46
77	Estrogen receptor specificity in the regulation of the skeleton in female mice. Journal of Endocrinology, 2001, 171, 229-236.	1.2	182
78	Estrogen receptor alpha, but not estrogen receptor beta, is involved in the regulation of the OPG/RANKL (osteoprotegerin/receptor activator of NF-kappa B ligand) ratio and serum interleukin-6 in male mice. Journal of Endocrinology, 2001, 171, 425-433.	1.2	82
79	Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5474-5479.	3.3	353
80	Obesity and Disturbed Lipoprotein Profile in Estrogen Receptor-α-Deficient Male Mice. Biochemical and Biophysical Research Communications, 2000, 278, 640-645.	1.0	299
81	Disproportional Body Growth in Female Estrogen Receptor-α-Inactivated Mice. Biochemical and Biophysical Research Communications, 1999, 265, 569-571.	1.0	82