
## **Trevor G Smart**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745005/publications.pdf Version: 2024-02-01



TDEVOD C. SMADT

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanisms of inhibition and activation of extrasynaptic $\hat{I} \pm \hat{I}^2$ GABAA receptors. Nature, 2022, 602, 529-533.                                               | 13.7 | 31        |
| 2  | Phosphorylation of neuroligin-2 by PKA regulates its cell surface abundance and synaptic stabilization. Science Signaling, 2022, 15, .                                      | 1.6  | 4         |
| 3  | Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses. Nature Communications, 2021, 12, 2112.             | 5.8  | 14        |
| 4  | Structural determinants and regulation of spontaneous activity in GABAA receptors. Nature Communications, 2021, 12, 5457.                                                   | 5.8  | 8         |
| 5  | AKAP79 enables calcineurin to directly suppress protein kinase A activity. ELife, 2021, 10, .                                                                               | 2.8  | 6         |
| 6  | GABAAR isoform and subunit structural motifs determine synaptic and extrasynaptic receptor localisation. Neuropharmacology, 2020, 169, 107540.                              | 2.0  | 34        |
| 7  | Differential Coassembly of α1-GABA <sub>A</sub> Rs Associated with Epileptic Encephalopathy. Journal of Neuroscience, 2020, 40, 5518-5530.                                  | 1.7  | 10        |
| 8  | Optopharmacology reveals a differential contribution of native GABAA receptors to dendritic and somatic inhibition using azogabazine. Neuropharmacology, 2020, 176, 108135. | 2.0  | 3         |
| 9  | Developing New 4-PIOL and 4-PHP Analogues for Photoinactivation of Î <sup>3</sup> -Aminobutyric Acid Type A Receptors. ACS Chemical Neuroscience, 2019, 10, 4669-4684.      | 1.7  | 6         |
| 10 | A half century of γ-aminobutyric acid. Brain and Neuroscience Advances, 2019, 3, 239821281985824.                                                                           | 1.8  | 42        |
| 11 | Probing GABAA receptors with inhibitory neurosteroids. Neuropharmacology, 2018, 136, 23-36.                                                                                 | 2.0  | 18        |
| 12 | Wnt Signaling Mediates LTP-Dependent Spine Plasticity and AMPAR Localization through Frizzled-7<br>Receptors. Cell Reports, 2018, 23, 1060-1071.                            | 2.9  | 64        |
| 13 | Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nature Communications, 2018, 9, 957.                 | 5.8  | 58        |
| 14 | Cell surface expression of homomeric GABAA receptors depends on single residues in subunit transmembrane domains. Journal of Biological Chemistry, 2018, 293, 13427-13439.  | 1.6  | 15        |
| 15 | Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nature Communications, 2017, 8, 14536.              | 5.8  | 31        |
| 16 | Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State.<br>Journal of Biological Chemistry, 2017, 292, 1550-1558.                | 1.6  | 19        |
| 17 | Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.<br>Nature Structural and Molecular Biology, 2017, 24, 977-985.             | 3.6  | 152       |
| 18 | Context-Dependent Modulation of GABA <sub>A</sub> R-Mediated Tonic Currents. Journal of Neuroscience, 2016, 36, 607-621.                                                    | 1.7  | 9         |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Murine startle mutant <i>Nmf11</i> affects the structural stability of the glycine receptor and increases deactivation. Journal of Physiology, 2016, 594, 3589-3607.                            | 1.3 | 10        |
| 20 | Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation. Cell Reports, 2016, 16, 1962-1973.                                                                   | 2.9 | 18        |
| 21 | Effects of <i>Gabra2</i> Point Mutations on Alcohol Intake: Increased Bingeâ€Like and Blunted Chronic<br>Drinking by Mice. Alcoholism: Clinical and Experimental Research, 2016, 40, 2445-2455. | 1.4 | 10        |
| 22 | Azogabazine; a photochromic antagonist of the GABA <sub>A</sub> receptor. Organic and<br>Biomolecular Chemistry, 2016, 14, 6676-6678.                                                           | 1.5 | 19        |
| 23 | Inhibitory Neurosteroids and the GABAA Receptor. Advances in Pharmacology, 2015, 72, 165-187.                                                                                                   | 1.2 | 28        |
| 24 | Snake neurotoxin α-bungarotoxin is an antagonist at native GABAA receptors. Neuropharmacology,<br>2015, 93, 28-40.                                                                              | 2.0 | 33        |
| 25 | Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors. Neuropharmacology, 2015, 88, 63-73.                                             | 2.0 | 27        |
| 26 | Brief Report: Isogenic Induced Pluripotent Stem Cell Lines From an Adult With Mosaic Down Syndrome<br>Model Accelerated Neuronal Ageing and Neurodegeneration. Stem Cells, 2015, 33, 2077-2084. | 1.4 | 56        |
| 27 | Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells.<br>Nature Communications, 2015, 6, 7364.                                                  | 5.8 | 42        |
| 28 | The desensitization gate of inhibitory Cys-loop receptors. Nature Communications, 2015, 6, 6829.                                                                                                | 5.8 | 117       |
| 29 | Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory. Nature Communications, 2015, 6, 6872.                                           | 5.8 | 106       |
| 30 | Pharmacological characterisation of murine α4β1δGABAA receptors expressed in Xenopus oocytes. BMC<br>Neuroscience, 2015, 16, 8.                                                                 | 0.8 | 6         |
| 31 | Neuronal Inhibition under the Spotlight. Neuron, 2015, 88, 845-847.                                                                                                                             | 3.8 | 1         |
| 32 | Photo-antagonism of the GABAA receptor. Nature Communications, 2014, 5, 4454.                                                                                                                   | 5.8 | 22        |
| 33 | Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition.<br>Nature Communications, 2013, 4, 2816.                                                           | 5.8 | 44        |
| 34 | Tracking Cell Surface Mobility of GPCRs Using α-Bungarotoxin-Linked Fluorophores. Methods in<br>Enzymology, 2013, 521, 109-129.                                                                 | 0.4 | 16        |
| 35 | Protein kinase <scp>C</scp> regulates tonic <scp>GABA<sub>A</sub></scp> receptorâ€mediated inhibition in the hippocampus and thalamus. European Journal of Neuroscience, 2013, 38, 3408-3423.   | 1.2 | 34        |
| 36 | Tyrosine Phosphorylation of GABAA Receptor Â2-Subunit Regulates Tonic and Phasic Inhibition in the<br>Thalamus. Journal of Neuroscience, 2013, 33, 12718-12727.                                 | 1.7 | 15        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Frontiers in Neural Circuits, 2013, 7, 193.                                                                                                                         | 1.4 | 56        |
| 38 | Sushi domains confer distinct trafficking profiles on GABA <sub>B</sub> receptors. Proceedings of the United States of America, 2012, 109, 12171-12176.                                                                                           | 3.3 | 35        |
| 39 | Synaptic Neurotransmitter-Gated Receptors. Cold Spring Harbor Perspectives in Biology, 2012, 4, a009662-a009662.                                                                                                                                  | 2.3 | 83        |
| 40 | Benzodiazepines Modulate GABA <sub>A</sub> Receptors by Regulating the Preactivation Step after GABA Binding. Journal of Neuroscience, 2012, 32, 5707-5715.                                                                                       | 1.7 | 99        |
| 41 | Use of Electrophysiological Methods in the Study of Recombinant and Native Neuronal Ligandâ€Gated<br>Ion Channels. Current Protocols in Pharmacology, 2012, 59, Unit 11.4.                                                                        | 4.0 | 2         |
| 42 | Synthesis and evaluation of highly potent GABAA receptor antagonists based on gabazine (SR-95531).<br>Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4252-4254.                                                                            | 1.0 | 18        |
| 43 | The major central endocannabinoid directly acts at GABA <sub>A</sub> receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18150-18155.                                                          | 3.3 | 149       |
| 44 | γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. Journal of<br>Biological Chemistry, 2011, 286, 24324-24335.                                                                                           | 1.6 | 20        |
| 45 | Â-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. Journal of<br>Biological Chemistry, 2011, 286, 24324-24335.                                                                                           | 1.6 | 21        |
| 46 | GABA Potency at GABAA Receptors Found in Synaptic and Extrasynaptic Zones. Frontiers in Cellular<br>Neuroscience, 2011, 6, 1.                                                                                                                     | 1.8 | 134       |
| 47 | Distinct activities of GABA agonists at synaptic―and extrasynapticâ€ŧype GABA <sub>A</sub> receptors.<br>Journal of Physiology, 2010, 588, 1251-1268.                                                                                             | 1.3 | 133       |
| 48 | Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic<br>sorting of GABA <sub>B</sub> receptors. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 13918-13923. | 3.3 | 107       |
| 49 | Binding, activation and modulation of Cys-loop receptors. Trends in Pharmacological Sciences, 2010, 31, 161-174.                                                                                                                                  | 4.0 | 276       |
| 50 | Intracellular Chloride Ions Regulate the Time Course of GABA-Mediated Inhibitory Synaptic<br>Transmission. Journal of Neuroscience, 2009, 29, 10416-10423.                                                                                        | 1.7 | 63        |
| 51 | Conserved site for neurosteroid modulation of GABAA receptors. Neuropharmacology, 2009, 56, 149-154.                                                                                                                                              | 2.0 | 204       |
| 52 | Mapping a molecular link between allosteric inhibition and activation of the glycine receptor. Nature<br>Structural and Molecular Biology, 2008, 15, 1084-1093.                                                                                   | 3.6 | 33        |
| 53 | Presynaptic NMDA Receptors. Frontiers in Neuroscience, 2008, , 313-328.                                                                                                                                                                           | 0.0 | 3         |
| 54 | Identification of the Sites for CaMK-II-dependent Phosphorylation of GABAA Receptors. Journal of<br>Biological Chemistry, 2007, 282, 17855-17865.                                                                                                 | 1.6 | 43        |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Phospho-Dependent Functional Modulation of GABAB Receptors by the Metabolic Sensor<br>AMP-Dependent Protein Kinase. Neuron, 2007, 53, 233-247.                                                          | 3.8  | 167       |
| 56 | Single-channel recording of ligand-gated ion channels. Nature Protocols, 2007, 2, 2826-2841.                                                                                                            | 5.5  | 41        |
| 57 | Neurosteroid binding sites on GABAA receptors. , 2007, 116, 7-19.                                                                                                                                       |      | 209       |
| 58 | Mutations in the gene encoding ClyT2 (SLC6A5) define a presynaptic component of human startle disease. Nature Genetics, 2006, 38, 801-806.                                                              | 9.4  | 232       |
| 59 | Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites.<br>Nature, 2006, 444, 486-489.                                                                              | 13.7 | 650       |
| 60 | Extrasynaptic αβ subunit GABAAreceptors on rat hippocampal pyramidal neurons. Journal of Physiology,<br>2006, 577, 841-856.                                                                             | 1.3  | 153       |
| 61 | Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nature Neuroscience, 2005, 8, 889-897.                                                                                           | 7.1  | 161       |
| 62 | Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+-mediated inhibition. Journal of Physiology, 2005, 566, 657-670.                                                             | 1.3  | 49        |
| 63 | Proton modulation of recombinant GABAAreceptors: influence of GABA concentration and the β subunit TM2-TM3 domain. Journal of Physiology, 2005, 567, 365-377.                                           | 1.3  | 32        |
| 64 | HEK293 cell line: A vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 2005, 51, 187-200.                                                        | 0.3  | 528       |
| 65 | Molecular Basis for Zinc Potentiation at Strychnine-sensitive Clycine Receptors. Journal of Biological<br>Chemistry, 2005, 280, 37877-37884.                                                            | 1.6  | 74        |
| 66 | Brain-Derived Neurotrophic Factor Modulates Fast Synaptic Inhibition by Regulating GABAA Receptor<br>Phosphorylation, Activity, and Cell-Surface Stability. Journal of Neuroscience, 2004, 24, 522-530. | 1.7  | 249       |
| 67 | Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar<br>interneuron–Purkinje cell synapses. Nature Neuroscience, 2004, 7, 525-533.                                   | 7.1  | 240       |
| 68 | Differential agonist sensitivity of glycine receptor α 2 subunit splice variants. British Journal of<br>Pharmacology, 2004, 143, 19-26.                                                                 | 2.7  | 35        |
| 69 | Activation of single heteromeric GABAAreceptor ion channels by full and partial agonists. Journal of Physiology, 2004, 557, 389-413.                                                                    | 1.3  | 58        |
| 70 | Zn2+ Ions: Modulators of Excitatory and Inhibitory Synaptic Activity. Neuroscientist, 2004, 10, 432-442.                                                                                                | 2.6  | 207       |
| 71 | Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nature<br>Neuroscience, 2003, 6, 362-369.                                                             | 7.1  | 226       |
| 72 | Identification of a β Subunit TM2 Residue Mediating Proton Modulation of GABA Type A Receptors.<br>Journal of Neuroscience, 2002, 22, 5328-5333.                                                        | 1.7  | 40        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Cyclic AMP–dependent protein kinase phosphorylation facilitates GABAB receptor–effector coupling.<br>Nature Neuroscience, 2002, 5, 415-424.                                                                               | 7.1  | 115       |
| 74 | GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein<br>Plic-1. Nature Neuroscience, 2001, 4, 908-916.                                                                    | 7.1  | 217       |
| 75 | Constructing inhibitory synapses. Nature Reviews Neuroscience, 2001, 2, 240-250.                                                                                                                                          | 4.9  | 422       |
| 76 | Proton sensitivity of rat cerebellar granule cell GABA A receptors: dependence on neuronal development. Journal of Physiology, 2001, 530, 219-233.                                                                        | 1.3  | 32        |
| 77 | Constitutive Endocytosis of GABA <sub>A</sub> Receptors by an Association with the Adaptin AP2<br>Complex Modulates Inhibitory Synaptic Currents in Hippocampal Neurons. Journal of Neuroscience,<br>2000, 20, 7972-7977. | 1.7  | 281       |
| 78 | Identification of Residues within GABAAReceptor α Subunits That Mediate Specific Assembly with Receptor β Subunits. Journal of Neuroscience, 2000, 20, 1297-1306.                                                         | 1.7  | 67        |
| 79 | GABAA Receptor Phosphorylation and Functional Modulation in Cortical Neurons by a Protein Kinase<br>C-dependent Pathway. Journal of Biological Chemistry, 2000, 275, 38856-38862.                                         | 1.6  | 162       |
| 80 | Identification of Amino Acid Residues within GABA <sub>A</sub> Receptor β Subunits that Mediate Both<br>Homomeric and Heteromeric Receptor Expression. Journal of Neuroscience, 1999, 19, 6360-6371.                      | 1.7  | 107       |
| 81 | Cell Surface Stability of Î <sup>3</sup> -Aminobutyric Acid Type A Receptors. Journal of Biological Chemistry, 1999, 274, 36565-36572.                                                                                    | 1.6  | 167       |
| 82 | Identification of an inhibitory Zn2+binding site on the human glycine receptor α1 subunit. Journal of Physiology, 1999, 520, 53-64.                                                                                       | 1.3  | 89        |
| 83 | Modulation of neuronal and recombinant GABAAreceptors by redox reagents. Journal of Physiology, 1999, 517, 35-50.                                                                                                         | 1.3  | 74        |
| 84 | Subcellular Localization and Endocytosis of Homomeric γ2 Subunit Splice Variants of γ-Aminobutyric<br>Acid Type A Receptors. Molecular and Cellular Neurosciences, 1999, 13, 259-271.                                     | 1.0  | 74        |
| 85 | Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nature Neuroscience, 1998, 1, 23-28.                                                                   | 7.1  | 211       |
| 86 | Interaction of H+and Zn2+on recombinant and native rat neuronal GABAAreceptors. Journal of Physiology, 1998, 507, 639-652.                                                                                                | 1.3  | 63        |
| 87 | Identification of a Zn2+binding site on the marine gABAAreceptor complex: Dependence on the Second transmembrane domain of β subunits. Journal of Physiology, 1997, 505, 633-640.                                         | 1.3  | 72        |
| 88 | Pharmacological and Physiological Characterization of Murine Homomeric β3 GABAAReceptors.<br>European Journal of Neuroscience, 1997, 9, 2225-2235.                                                                        | 1.2  | 114       |
| 89 | Assembly and Cell Surface Expression of Heteromeric and Homomeric γ-Aminobutyric Acid Type A<br>Receptors. Journal of Biological Chemistry, 1996, 271, 89-96.                                                             | 1.6  | 293       |
| 90 | Modulation of GABAA receptors by tyrosine phosphorylation. Nature, 1995, 377, 344-348.                                                                                                                                    | 13.7 | 208       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Archiv<br>European Journal of Physiology, 1994, 427, 481-486.                                                        | 1.3  | 77        |
| 92 | Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Progress in Neurobiology, 1994, 42, 393-441.                                                                                   | 2.8  | 416       |
| 93 | Speciesâ€dependent functional properties of nonâ€NMDA receptors expressed in <i>Xenopus laevis</i> oocytes injected with mammalian and avian brain mRNA. British Journal of Pharmacology, 1994, 111,<br>803-810. | 2.7  | 4         |
| 94 | Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron, 1994, 12, 1081-1095.                                                                                                          | 3.8  | 290       |
| 95 | Giant GABAB-mediated Synaptic Potentials Induced by Zinc in the Rat Hippocampus: Paradoxical Effects of Zinc on the GABABReceptor. European Journal of Neuroscience, 1993, 5, 430-436.                           | 1.2  | 14        |
| 96 | Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Letters, 1993, 324, 219-225.                                                                                                   | 1.3  | 496       |
| 97 | Thiocyanate ions selectively antagonize AMPAâ€evoked responses in <i>Xenopus laevis</i> oocytes microinjected with rat brain mRNA. British Journal of Pharmacology, 1993, 109, 779-787.                          | 2.7  | 24        |
| 98 | A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature, 1991,<br>349, 521-524.                                                                                           | 13.7 | 367       |