Catherine M Bollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67445/publications.pdf Version: 2024-02-01

		16411	19690
307	16,180	64	117
papers	citations	h-index	g-index
315	315	315	13692
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood, 2022, 139, 983-994.	0.6	17
2	Spike-directed vaccination elicits robust spike-specific T-cell response, including to mutant strains. Cytotherapy, 2022, 24, 10-15.	0.3	6
3	Tumor-associated antigen–specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Advances, 2022, 6, 473-485.	2.5	11
4	High risk of relapsed disease in patients with NK/T-cell chronic active Epstein-Barr virus disease outside of Asia. Blood Advances, 2022, 6, 452-459.	2.5	11
5	Antigen-specific T cell responses correlate with decreased occurrence of acute GVHD in a multicenter contemporary cohort. Bone Marrow Transplantation, 2022, 57, 279-281.	1.3	2
6	Off-the-Shelf Third-Party Virus-Specific T Cell Therapy to Treat JC Polyomavirus Infection in Hematopoietic Stem Cell Transplantation Recipients. Transplantation and Cellular Therapy, 2022, 28, 116.e1-116.e7.	0.6	11
7	Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Advances, 2022, 6, 2897-2907.	2.5	13
8	Robust immune responses to SARS-CoV-2 in a pediatric patient with B-Cell ALL receiving tisagenlecleucel. Pediatric Hematology and Oncology, 2022, , 1-9.	0.3	0
9	A biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation. Blood Advances, 2022, 6, 1866-1878.	2.5	4
10	The generation and application of antigen-specific TÂcell therapies for cancer and viral-associated disease. Molecular Therapy, 2022, 30, 2130-2152.	3.7	19
11	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13
12	Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT. Blood Advances, 2022, 6, 2520-2534.	2.5	19
13	Children's Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. Journal of Clinical Oncology, 2022, 40, 2106-2118.	0.8	45
14	Reply to R. Lakhotia et al. Journal of Clinical Oncology, 2022, , JCO2102912.	0.8	0
15	Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific TÂcell therapy products. Molecular Therapy - Methods and Clinical Development, 2022, 25, 439-447.	1.8	4
16	Comparable transforming growth factor beta-mediated immune suppression in ex vivo-expanded natural killer cells from cord blood and peripheral blood: implications for adoptive immunotherapy. Cytotherapy, 2022, 24, 802-817.	0.3	2
17	IMMU-19. Outcomes of Pediatric Patients with High-Risk CNS Tumors Treated with Multi-tumor associated antigen specific T cell (TAA-T) therapy: the ReMIND trial. Neuro-Oncology, 2022, 24, i85-i86.	0.6	1
18	Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood, 2021, 137, 1777-1791.	0.6	25

#	Article	IF	CITATIONS
19	NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplantation and Cellular Therapy, 2021, 27, 21-35.	0.6	16
20	Hematopoietic Cell Transplantation: Practice Predictions for the Year 2023. Transplantation and Cellular Therapy, 2021, 27, 183.e1-183.e7.	0.6	6
21	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	1.8	39
22	Preventative and Preemptive Strategies for EBV Infection and PTLD After HSCT. , 2021, , 239-251.		0
23	Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy, 2021, 23, 65-76.	0.3	10
24	Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALCL: results of COG trial ANHL12P1. Blood, 2021, 137, 3595-3603.	0.6	40
25	Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy, 2021, 23, 694-703.	0.3	7
26	Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Review of Clinical Immunology, 2021, 17, 643-659.	1.3	5
27	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	0.8	30
28	A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies. Journal of Experimental Medicine, 2021, 218, .	4.2	9
29	Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody Deficiency. Journal of Clinical Immunology, 2021, 41, 1146-1153.	2.0	45
30	Genomic and clinical characterization of early T-cell precursor lymphoblastic lymphoma. Blood Advances, 2021, 5, 2890-2900.	2.5	3
31	Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Annals of Hematology, 2021, 100, 2529-2539.	0.8	12
32	Introduction to a review series on gene therapy and gene editing for sickle cell disease and hemophilia. Blood, 2021, 138, 913-913.	0.6	0
33	Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Advances, 2021, 5, 3309-3321.	2.5	26
34	Dose-Adjusted Etoposide, Doxorubicin, and Cyclophosphamide With Vincristine and Prednisone Plus Rituximab Therapy in Children and Adolescents With Primary Mediastinal B-Cell Lymphoma: A Multicenter Phase II Trial. Journal of Clinical Oncology, 2021, 39, 3716-3724.	0.8	18
35	Using Molecular Stratification for Smart Combination Therapies. Journal of Clinical Oncology, 2021, 39, 3527-3530.	0.8	2
36	Novel TCR-like CAR-T cells targeting an HLAâ^—0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia. Molecular Therapy - Methods and Clinical Development, 2021, 23, 296-306.	1.8	12

#	Article	IF	CITATIONS
37	Intensification of Chemotherapy Using a Modified BFM Backbone for Children, Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LL) Identifies Highly Chemorefractory Patients Who Benefit from Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2021, 138, 3487-3487.	0.6	1
38	Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nature Communications, 2021, 12, 6689.	5.8	25
39	SARS-CoV-2-Specific T Cell Responses Are Stronger in Children With Multisystem Inflammatory Syndrome Compared to Children With Uncomplicated SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 793197.	2.2	14
40	Flow-based analysis of cell division identifies highly active populations within plasma products during mixed lymphocyte cultures. Blood Transfusion, 2021, 19, 456-466.	0.3	1
41	HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. Molecular Therapy - Methods and Clinical Development, 2020, 16, 11-20.	1.8	16
42	Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. Journal of Infectious Diseases, 2020, 221, 578-588.	1.9	15
43	Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 78-88.	1.8	10
44	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.3	29
45	Complement inhibition does not impair the clinical antiviral capabilities of virus-specific T-cell therapy. Blood Advances, 2020, 4, 3252-3257.	2.5	5
46	Defining the Inflammatory Plasma Proteome in Pediatric Hodgkin Lymphoma. Cancers, 2020, 12, 3603.	1.7	6
47	Allogeneic bone marrow transplantation with post-transplant cyclophosphamide for patients with HIV and haematological malignancies: a feasibility study. Lancet HIV,the, 2020, 7, e602-e610.	2.1	11
48	The effects of β1 and β1+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress and Chaperones, 2020, 25, 993-1012.	1.2	5
49	SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood, 2020, 136, 2905-2917.	0.6	108
50	Introduction to a How I Treat series on hematologic complications in pregnancy. Blood, 2020, 136, 2093-2093.	0.6	0
51	T-Cell Therapeutics Targeting Human Parainfluenza Virus 3 Are Broadly Epitope Specific and Are Cross Reactive With Human Parainfluenza Virus 1. Frontiers in Immunology, 2020, 11, 575977.	2.2	4
52	Assessment of ST2 for risk of death following graft-versus-host disease in pediatric and adult age groups. Blood, 2020, 135, 1428-1437.	0.6	15
53	Rituximab for High-Risk, Mature B-Cell Non-Hodgkin's Lymphoma in Children. New England Journal of Medicine, 2020, 382, 2207-2219.	13.9	157
54	Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children's Oncology Group AALL0434. Journal of Clinical Oncology, 2020, 38, 3062-3070.	0.8	42

#	Article	IF	CITATIONS
55	Cancer Moonshot Immuno-Oncology Translational Network (IOTN): accelerating the clinical translation of basic discoveries for improving immunotherapy and immunoprevention of cancer. , 2020, 8, e000796.		7
56	Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 298.	1.8	8
57	Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma. Nanomaterials, 2020, 10, 161.	1.9	25
58	Virus-specific T-cell therapies for patients with primary immune deficiency. Blood, 2020, 135, 620-628.	0.6	45
59	Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: a phase I clinical trial protocol (ENABLE). BMJ Open, 2020, 10, e034629.	0.8	26
60	Introduction to a review series on understanding and treating primary immunodeficiency. Blood, 2020, 135, 591-591.	0.6	0
61	BCL-2 antagonism sensitizes cytotoxic T cell–resistant HIV reservoirs to elimination ex vivo. Journal of Clinical Investigation, 2020, 130, 2542-2559.	3.9	77
62	Cranial Radiation Can be Eliminated in Most Children with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and Bortezomib Potentially Improves Survival in Children with T-Cell Lymphoblastic Lymphoma (T-LL): Results of Children's Oncology Group (COG) Trial AALL1231. Blood, 2020, 136, 11-12.	0.6	10
63	Increased Tumor Specific Cytotoxic T Cell Responses and Reversion to a Favorable Cytokine Profile after Treatment in Patients with Newly Diagnosed High Risk Hodgkin Lymphoma Treated on Children's Oncology Group Trial-AHOD1331. Blood, 2020, 136, 41-42.	0.6	1
64	Tumor Associated Antigen Specific T Cells Given in Combination with Nivolumab for the Treatment of Hodgkin Lymphoma. Blood, 2020, 136, 18-18.	0.6	1
65	Virus-specific T-cell therapy to treat BK polyomavirus infection in bone marrow and solid organ transplant recipients. Blood Advances, 2020, 4, 5745-5754.	2.5	19
66	Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 45-63.	12.5	178
67	Immunotherapy of Relapsed and Refractory Solid Tumors With Ex Vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. Journal of Clinical Oncology, 2019, 37, 2349-2359.	0.8	56
68	T-cell therapies for T-cell lymphoma. Cytotherapy, 2019, 21, 935-942.	0.3	10
69	Generation of Zika virus–specific T cells from seropositive and virus-naÃ⁻ve donors for potential use as an autologous or "off-the-shelf―immunotherapeutic. Cytotherapy, 2019, 21, 840-855.	0.3	10
70	Driving the CAR to the Bone Marrow Transplant Program. Current Hematologic Malignancy Reports, 2019, 14, 561-569.	1.2	10
71	latrogenic immunodeficiency-associated lymphoproliferative disorder in a child with B-cell acute lymphoblastic leukemia. Pediatric Hematology and Oncology, 2019, 36, 309-316.	0.3	4
72	ROR1 and ROR2—novel targets for neuroblastoma. Pediatric Hematology and Oncology, 2019, 36, 352-364.	0.3	13

#	Article	IF	CITATIONS
73	Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, 2305-2321.	2.0	132
74	Medulloblastoma rendered susceptible to NK-cell attack by TGFÎ ² neutralization. Journal of Translational Medicine, 2019, 17, 321.	1.8	32
75	Tâ€cell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	1.2	29
76	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019, 54, 1868-1880.	1.3	86
77	Engineering the TGFÎ ² Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clinical Cancer Research, 2019, 25, 4400-4412.	3.2	52
78	Mycobacteria-Specific T Cells May Be Expanded From Healthy Donors and Are Near Absent in Primary Immunodeficiency Disorders. Frontiers in Immunology, 2019, 10, 621.	2.2	4
79	ACCELERATE and European Medicine Agency Paediatric Strategy Forum for medicinal product development for mature B-cell malignancies in children. European Journal of Cancer, 2019, 110, 74-85.	1.3	39
80	Designing Magnetically Responsive Biohybrids Composed of Cord Blood-Derived Natural Killer Cells and Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2019, 30, 552-560.	1.8	24
81	Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Advances, 2019, 3, 2057-2068.	2.5	27
82	Virus-Specific T Cells: Current and Future Use in Primary Immunodeficiency Disorders. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 809-818.	2.0	16
83	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, e76-e85.	2.0	85
84	Characterization of natural killer cells expressing markers associated with maturity and cytotoxicity in children and young adults with sickle cell disease. Pediatric Blood and Cancer, 2019, 66, e27601.	0.8	5
85	Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Frontiers in Immunology, 2019, 10, 3082.	2.2	36
86	HIV-Specific T Cells Generated from Naive T Cells Suppress HIV InÂVitro and Recognize Wide Epitope Breadths. Molecular Therapy, 2018, 26, 1435-1446.	3.7	18
87	Reprint of: Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, S1-S6.	2.0	7
88	Imaging of subclinical haemopoiesis after stem-cell transplantation in patients with haematological malignancies: a prospective pilot study. Lancet Haematology,the, 2018, 5, e44-e52.	2.2	14
89	Human papilloma virus–specific T cells can be generated from naÃ⁻ve T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy, 2018, 20, 385-393.	0.3	15
90	How I treat T-cell chronic active Epstein-Barr virus disease. Blood, 2018, 131, 2899-2905.	0.6	72

#	Article	IF	CITATIONS
91	Introduction to a review series on emerging immunotherapies for hematologic diseases. Blood, 2018, 131, 2617-2620.	0.6	7
92	A single exercise bout augments adenovirus-specific T-cell mobilization and function. Physiology and Behavior, 2018, 194, 56-65.	1.0	21
93	Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β2-adrenergic receptor. Brain, Behavior, and Immunity, 2018, 68, 66-75.	2.0	36
94	Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, 13-18.	2.0	37
95	Cell therapies for hematological malignancies: don't forget non-gene-modified t cells!. Blood Reviews, 2018, 32, 203-224.	2.8	21
96	Introduction to a review series on therapeutic antibodies. Blood, 2018, 131, 1-1.	0.6	47
97	Beyond Chemotherapy: Checkpoint Inhibition and Cell-Based Therapy in Non-Hodgkin Lymphoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 592-603.	1.8	9
98	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	0.8	137
99	Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. Journal of Clinical Investigation, 2018, 128, 876-889.	3.9	157
100	HIV-Specific, ExÂVivo Expanded T Cell Therapy: Feasibility, Safety, and Efficacy in ART-Suppressed HIV-Infected Individuals. Molecular Therapy, 2018, 26, 2496-2506.	3.7	32
101	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	0.6	49
102	β2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain, Behavior, and Immunity, 2018, 74, 143-153.	2.0	80
103	Antiviral T Cells for Adenovirus in the Pretransplant Period: A Bridge Therapy for Severe Combined Immunodeficiency. Biology of Blood and Marrow Transplantation, 2018, 24, 1944-1946.	2.0	6
104	Malignant Lymphomas in Childhood. , 2018, , 1330-1342.e5.		2
105	Adoptive T Cell Therapy for Epstein–Barr Virus Complications in Patients With Primary Immunodeficiency Disorders. Frontiers in Immunology, 2018, 9, 556.	2.2	27
106	Reduced-intensity conditioning for hematopoietic cell transplant for HLH and primary immune deficiencies. Blood, 2018, 132, 1438-1451.	0.6	78
107	A New Method for Reactivating and Expanding T Cells Specific for Rhizopus oryzae. Molecular Therapy - Methods and Clinical Development, 2018, 9, 305-312.	1.8	24
108	Toxicity Profile of Brentuximab Vedotin in Combination with Chemotherapy for Newly Diagnosed Patients with ALK+ ALCL: A Children's Oncology Group Study ANHL12P1. Blood, 2018, 132, 1625-1625.	0.6	2

#	Article	IF	CITATIONS
109	Ex vivo expanded multi-antigen specific lymphocytes for the treatment of solid tumors Journal of Clinical Oncology, 2018, 36, 3042-3042.	0.8	3
110	Phase II study of ex vivo expanded cord blood natural killer cells for multiple myeloma Journal of Clinical Oncology, 2018, 36, 8006-8006.	0.8	8
111	Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. , 2018, , 395-411.		1
112	Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy, 2017, 19, 408-418.	0.3	97
113	Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders. Current Allergy and Asthma Reports, 2017, 17, 3.	2.4	10
114	HIV Receives a "One Two Knockout Punch― Molecular Therapy, 2017, 25, 566-567.	3.7	0
115	Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exercise and Sport Sciences Reviews, 2017, 45, 163-172.	1.6	37
116	Toward a Rapid Production of Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Molecular Therapy - Methods and Clinical Development, 2017, 5, 13-21.	1.8	38
117	Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. British Journal of Haematology, 2017, 177, 457-466.	1.2	158
118	Outcomes of adults and children with primary mediastinal Bâ€cell lymphoma treated with doseâ€adjusted <scp>EPOCH</scp> â€R. British Journal of Haematology, 2017, 179, 739-747.	1.2	101
119	Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT. Cytotherapy, 2017, 19, e3.	0.3	5
120	Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine, 2017, 23, 52-58.	2.7	29
121	Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 771-781.	1.7	122
122	EBV-Directed T Cell Therapeutics for EBV-Associated Lymphomas. Methods in Molecular Biology, 2017, 1532, 255-265.	0.4	16
123	Developing T-cell therapies for lymphoma without receptor engineering. Hematology American Society of Hematology Education Program, 2017, 2017, 622-631.	0.9	2
124	Developing T-cell therapies for lymphoma without receptor engineering. Blood Advances, 2017, 1, 2579-2590.	2.5	7
125	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	3.9	301
126	Virus-Specific T Cells for the Immunocompromised Patient. Frontiers in Immunology, 2017, 8, 1272.	2.2	72

#	Article	IF	CITATIONS
127	Virus-Specific T Cells for Hematopoietic Stem Cell Transplantation. Current Stem Cell Reports, 2017, 3, 290-300.	0.7	0
128	Engineering cord blood to improve engraftment after cord blood transplant. Stem Cell Investigation, 2017, 4, 41-41.	1.3	20
129	Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Current Drug Targets, 2017, 18, 271-280.	1.0	7
130	PR1-specific cytotoxic T lymphocytes are relatively frequent in umbilical cord blood and can be effectively expanded to target myeloid leukemia. Cytotherapy, 2016, 18, 995-1001.	0.3	9
131	A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy. Scientific Reports, 2016, 6, 25852.	1.6	22
132	Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica, 2016, 101, 531-540.	1.7	75
133	Introduction to a review series on advances in cell-based immune therapeutics in hematology. Blood, 2016, 127, 3293-3293.	0.6	2
134	T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood, 2016, 127, 3331-3340.	0.6	177
135	Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy, 2016, 18, 1515-1524.	0.3	33
136	Cellular therapy for sickle cell disease. Cytotherapy, 2016, 18, 1360-1369.	0.3	13
137	Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy. Nanomedicine, 2016, 11, 1759-1767.	1.7	56
138	Rare Pediatric Non-Hodgkin Lymphomas: A Report From Children's Oncology Group Study ANHL 04B1. Pediatric Blood and Cancer, 2016, 63, 794-800.	0.8	43
139	Enhancing The Generation Of Adenovirus-Specific T Cells With Exercise For Immunotherapy. Medicine and Science in Sports and Exercise, 2016, 48, 86-87.	0.2	1
140	T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy, 2016, 18, 931-942.	0.3	36
141	Gene Modification of Human Natural Killer Cells Using a Retroviral Vector. Methods in Molecular Biology, 2016, 1441, 203-213.	0.4	11
142	Functionally Active HIV-Specific T Cells that Target Gag and Nef Can Be Expanded from Virus-NaÃ ⁻ ve Donors and Target a Range of Viral Epitopes: Implications for a Cure Strategy after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 536-541.	2.0	34
143	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	1.5	117
144	Human cytomegalovirus infection and the immune response to exercise. Exercise Immunology Review, 2016, 22, 8-27.	0.4	36

#	Article	IF	CITATIONS
145	Administration of LMP-Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Lymphoma Post Allogeneic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2015, 21, S148.	2.0	1
146	Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood, 2015, 125, 2885-2892.	0.6	118
147	T-Cell Immunotherapy for Cancer. , 2015, , 389-410.		0
148	Directed T-cell therapies for leukemia and lymphoma after hematopoietic stem cell transplant: beyond chimeric antigen receptors. International Journal of Hematologic Oncology, 2015, 4, 99-111.	0.7	0
149	Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. Therapeutic Advances in Hematology, 2015, 6, 295-307.	1.1	16
150	Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy, 2015, 17, 749-755.	0.3	18
151	Expanded Cytotoxic T-cell Lymphocytes Target the Latent HIV Reservoir. Journal of Infectious Diseases, 2015, 212, 258-263.	1.9	86
152	Matched Related and Unrelated Donor Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency. Biology of Blood and Marrow Transplantation, 2015, 21, 1037-1045.	2.0	45
153	Administration of LMP-specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive lymphoma post allogeneic stem cell transplant. Cytotherapy, 2015, 17, S18.	0.3	2
154	A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cellular Immunology, 2015, 295, 52-59.	1.4	23
155	CMV-specific T cells generated from naÃ ⁻ ve T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	5.8	93
156	Broadly-specific Cytotoxic T Cells Targeting Multiple HIV Antigens Are Expanded From HIV+ Patients: Implications for Immunotherapy. Molecular Therapy, 2015, 23, 387-395.	3.7	46
157	General and Virus-Specific Immune Cell Reconstitution after Double Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1284-1290.	2.0	51
158	Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: Impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain, Behavior, and Immunity, 2015, 49, 59-65.	2.0	38
159	T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica, 2015, 100, 709-719.	1.7	30
160	Quantitative activation suppression assay to evaluate human bone marrow–derived mesenchymal stromal cell potency. Cytotherapy, 2015, 17, 1675-1686.	0.3	31
161	Challenges in the harmonization of immune monitoring studies and trial design for cell-based therapies in the context of hematopoietic cell transplantation for pediatric cancer patients. Cytotherapy, 2015, 17, 1667-1674.	0.3	15
162	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	3.7	28

#	Article	IF	CITATIONS
163	Pediatric Lymphomas and Histiocytic Disorders of Childhood. Pediatric Clinics of North America, 2015, 62, 139-165.	0.9	77
164	Will Post-Transplantation Cell Therapies for Pediatric Patients Become Standard of Care?. Biology of Blood and Marrow Transplantation, 2015, 21, 402-411.	2.0	8
165	Immunotherapy for Lymphoma Using T Cells Targeting Multiple Tumor Associated Antigens. Blood, 2015, 126, 186-186.	0.6	13
166	The coming of age of adoptive T-cell therapy for viral infection after stem cell transplantation. Annals of Translational Medicine, 2015, 3, 62.	0.7	13
167	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	0.6	0
168	A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exercise Immunology Review, 2015, 21, 144-53.	0.4	27
169	Immunologic special forces: anti-pathogen cytotoxic T-lymphocyte immunotherapy following hematopoietic stem cell transplantation. ImmunoTargets and Therapy, 2014, 3, 97.	2.7	0
170	Controlling Cytomegalovirus: Helping the Immune System Take the Lead. Viruses, 2014, 6, 2242-2258.	1.5	66
171	A Change in the Editorial Office: Farewell from Catherine M. Bollard. Pediatric Hematology and Oncology, 2014, 31, 393-394.	0.3	0
172	Cytotoxic T lymphocytes for leukemia and lymphoma. Hematology American Society of Hematology Education Program, 2014, 2014, 565-569.	0.9	20
173	Opportunities and challenges of proteomics in pediatric patients: Circulating biomarkers after hematopoietic stem cell transplantation as a successful example. Proteomics - Clinical Applications, 2014, 8, 837-850.	0.8	4
174	Reply to S. Yuan et al. Journal of Clinical Oncology, 2014, 32, 2820-2821.	0.8	0
175	Complementation of Antigen-presenting Cells to Generate T Lymphocytes With Broad Target Specificity. Journal of Immunotherapy, 2014, 37, 193-203.	1.2	42
176	Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy, 2014, 16, 1153-1157.	0.3	10
177	Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment. Cytotherapy, 2014, 16, 84-89.	0.3	42
178	Third-party umbilical cord blood–derived regulatory T cells prevent xenogenic graft-versus-host disease. Cytotherapy, 2014, 16, 90-100.	0.3	53
179	Immunotherapy: opportunities, risks and future perspectives. Cytotherapy, 2014, 16, S120-S129.	0.3	8
180	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	0.8	433

#	Article	IF	CITATIONS
181	Ultra Low-Dose IL-2 for GVHD Prophylaxis after Allogeneic Hematopoietic Stem Cell Transplantation Mediates Expansion of Regulatory T Cells without Diminishing Antiviral and Antileukemic Activity. Clinical Cancer Research, 2014, 20, 2215-2225.	3.2	176
182	Concise Review: Umbilical Cord Blood Transplantation: Past, Present, and Future. Stem Cells Translational Medicine, 2014, 3, 1435-1443.	1.6	75
183	Pediatric Burkitt's Lymphoma and Diffuse B-Cell Lymphoma: Are Surveillance Scans Required?. Pediatric Hematology and Oncology, 2014, 31, 253-257.	0.3	25
184	Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain, Behavior, and Immunity, 2014, 39, 160-171.	2.0	121
185	The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy, 2014, 16, 149-159.	0.3	66
186	The Development of a Myeloablative, Reduced-Toxicity, Conditioning Regimen for Cord Blood Transplantation. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, e1-e5.	0.2	21
187	Ultra-low Dose Interleukin-2 Promotes Immune-modulating Function of Regulatory T Cells and Natural Killer Cells in Healthy Volunteers. Molecular Therapy, 2014, 22, 1388-1395.	3.7	106
188	The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans. Brain, Behavior, and Immunity, 2014, 39, 142-151.	2.0	53
189	FLT Imaging Reveals Kinetics and Biology of Engraftment after Myeloablative HSCT. Blood, 2014, 124, 1147-1147.	0.6	0
190	A Novel Standardized Quantitative Suppression Assay Reveals a Diversity of Human Immune-Regulatory Cell Potency. Blood, 2014, 124, 316-316.	0.6	0
191	Highlights of the Third International Conference on Immunotherapy in Pediatric Oncology. Pediatric Hematology and Oncology, 2013, 30, 349-366.	0.3	3
192	Children's Oncology Group's 2013 blueprint for research: Nonâ€Hodgkin lymphoma. Pediatric Blood and Cancer, 2013, 60, 979-984.	0.8	35
193	Generation of Tumor Antigen-Specific T Cell Lines from Pediatric Patients with Acute Lymphoblastic Leukemia—Implications for Immunotherapy. Clinical Cancer Research, 2013, 19, 5079-5091.	3.2	81
194	Cord Blood Graft Engineering. Biology of Blood and Marrow Transplantation, 2013, 19, S74-S78.	2.0	16
195	The 2013 Educational Supplement on Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, S1.	2.0	1
196	Enhancing Immune Reconstitution: From Bench to Bedside. Biology of Blood and Marrow Transplantation, 2013, 19, S79-S83.	2.0	12
197	Improving T-Cell Therapy for Epstein-Barr Virus Lymphoproliferative Disorders. Journal of Clinical Oncology, 2013, 31, 5-7.	0.8	42
198	T-cell therapies for HIV. Immunotherapy, 2013, 5, 407-414.	1.0	43

#	Article	IF	CITATIONS
199	Post-Transplant Lymphoproliferative Disease in Pediatric Solid Organ Transplant Recipients. Pediatric Hematology and Oncology, 2013, 30, 520-531.	0.3	50
200	Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood, 2013, 121, 5113-5123.	0.6	507
201	Scouting out the neighborhood in AIDS-related lymphoma. Blood, 2013, 122, 306-307.	0.6	11
202	Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122, 2965-2973.	0.6	470
203	Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity. PLoS ONE, 2013, 8, e76781.	1.1	155
204	Multi-Virus-Specific T-Cell Therapy For Patients After Hematopoietic Stem Cell and Cord Blood Transplantation. Blood, 2013, 122, 140-140.	0.6	16
205	Whole genome sequencing of sporadic Burkitt lymphoma in HIV-infected and uninfected patients Journal of Clinical Oncology, 2013, 31, 8577-8577.	0.8	0
206	T-cell therapy for cancer. Immunotherapy, 2012, 4, 347-350.	1.0	3
207	T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature Reviews Clinical Oncology, 2012, 9, 510-519.	12.5	230
208	Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. Journal of Immunotherapy, 2012, 35, 159-168.	1.2	59
209	Cord-Blood Engraftment with Ex Vivo Mesenchymal-Cell Coculture. New England Journal of Medicine, 2012, 367, 2305-2315.	13.9	430
210	Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus. Journal of Visualized Experiments, 2012, , e3627.	0.2	20
211	Production of good manufacturing practice-grade cytotoxic T lymphocytes specific for Epstein–Barr virus, cytomegalovirus and adenovirus to prevent or treat viral infections post-allogeneic hematopoietic stem cell transplant. Cytotherapy, 2012, 14, 7-11.	0.3	39
212	Aggressive peripheral CD70â€positive tâ€cell lymphoma associated with severe chronic active EBV infection. Pediatric Blood and Cancer, 2012, 59, 758-761.	0.8	5
213	ExÂvivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγnull mice. Experimental Hematology, 2012, 40, 445-456.	0.2	84
214	Reply to Sackstein. Experimental Hematology, 2012, 40, 519-520.	0.2	1
215	Improving Immune Reconstitution After Cord Blood Transplantation Using Ex Vivo Expanded Virus-Specific T Cells: A Phase I Clinical Study. Blood, 2012, 120, 224-224.	0.6	2
216	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	0.6	2

#	Article	IF	CITATIONS
217	Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy, 2011, 13, 976-986.	0.3	50
218	Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein–Barr virus-associated lymphoma. Cytotherapy, 2011, 13, 518-522.	0.3	25
219	Novel Cord Blood Transplant Therapies. Biology of Blood and Marrow Transplantation, 2011, 17, S39-S45.	2.0	13
220	Improving T-cell Therapy for Relapsed EBV-Negative Hodgkin Lymphoma by Targeting Upregulated MAGE-A4. Clinical Cancer Research, 2011, 17, 7058-7066.	3.2	72
221	Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood, 2011, 117, 5835-5849.	0.6	241
222	Sobering realities of surviving Hodgkin Lymphoma. Blood, 2011, 117, 1772-1773.	0.6	17
223	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	3.7	80
224	Hodgkin Disease and the Role of the Immune System. Pediatric Hematology and Oncology, 2011, 28, 176-186.	0.3	34
225	T-Cell Therapies for Epstein-Barr Virus–Associated Lymphomas. Pediatric Hematology and Oncology, 2011, 28, 627-639.	0.3	10
226	CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. Journal of Clinical Investigation, 2011, 121, 1822-1826.	3.9	876
227	Phase I Study to Improve Virus-Specific Immune Reconstitution After Cord Blood Transplantation Using Cord Blood-Derived Virus-Specific Cytotoxic T Lymphocytes. Blood, 2011, 118, 155-155.	0.6	4
228	Lenalidomide Treatment Enhances Immunological Synapse Formation of Cord Blood Natural Killer Cells with B Cells Derived From Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1794-1794.	0.6	2
229	CD137L Reverse the Immunological Synapse Defects of Natural Killer Cells in Acute Myeloid Leukemia. Blood, 2011, 118, 246-246.	0.6	1
230	Towards Phase 2/3 Trials for Epstein - Barr Virus (EBV)-Associated Malignancies,. Blood, 2011, 118, 4043-4043.	0.6	0
231	Generation of Multi-Antigen Specific T Cells for Adoptive Immunotherapy of Myeloid Leukemia and Identification of MHC Class I and II-Restricted Peptides for WT1, Proteinase 3 and Human Neutrophil Elastase. Blood, 2011, 118, 2985-2985.	0.6	4
232	Adoptive Immunotherapy with Autologous CD3/CD28-Costimulated T-Cells After Fludarabine-Based Chemotherapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2855-2855.	0.6	0
233	Adoptive Transfer of EBV-specific T Cells Results in Sustained Clinical Responses in Patients With Locoregional Nasopharyngeal Carcinoma. Journal of Immunotherapy, 2010, 33, 983-990.	1.2	201
234	Cord Blood Natural Killer Cells Exhibit Impaired Lytic Immunological Synapse Formation That Is Reversed With IL-2 Exvivo Expansion. Journal of Immunotherapy, 2010, 33, 684-696.	1.2	58

#	Article	IF	CITATIONS
235	Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115, 925-935.	0.6	721
236	Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood, 2010, 116, 4700-4702.	0.6	176
237	A novel latent membrane 2 transcript expressed in Epstein-Barr virus–positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood, 2010, 116, 3695-3704.	0.6	63
238	Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy, 2010, 12, 713-720.	0.3	27
239	Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma. Leukemia and Lymphoma, 2010, 51, 870-880.	0.6	44
240	Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy, 2010, 12, 743-749.	0.3	75
241	Isolating cytomegalovirus-specific T cells for adoptive transfer: are we there yet?. Cytotherapy, 2010, 12, 857-858.	0.3	0
242	Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood, 2010, 115, 2695-2703.	0.6	105
243	Allogeneic Virus-Specific T Cells with HLA Alloreactivity Do Not Produce Graft-Versus-Host Disease In Human Subjects. Blood, 2010, 116, 1252-1252.	0.6	1
244	The Histone Deacetylase Inhibitor Entinostat (SNDX-275) Targets Hodgkin Lymphoma through a Dual Mechanism of Immune Modulation and Apoptosis Induction. Blood, 2010, 116, 2850-2850.	0.6	3
245	Mesenchymal Stem Cell (MSC) Based Cord Blood (CB) Expansion (Exp) Leads to Rapid Engraftment of Platelets and Neutrophils. Blood, 2010, 116, 362-362.	0.6	14
246	Most Closely HLA-Matched Allogeneic Virus Specific Cytotoxic T-Lymphocytes (CTL) to Treat Persistent Reactivation or Infection with Adenovirus, CMV and EBV After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2010, 116, 829-829.	0.6	98
247	Targeting Chronic Lymphocytic Leukemia with Cord Blood NK Cells In NSG Model. Blood, 2010, 116, 2453-2453.	0.6	0
248	Antigen Presenting Cell-Mediated Ex Vivo Expansion of Human Umbilical Cord Blood Cells Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity. Blood, 2010, 116, 2100-2100.	0.6	0
249	Anti-Viral Cytotoxic T-Lymphocyte Therapy. Blood, 2010, 116, SCI-50-SCI-50.	0.6	0
250	The Effects of Co-Stimulatory Endodomains on the Fate of T Cells Expressing a Tumor Directed Chimeric Antigen Receptor (CAR) In Human Subjects with B Cell Malignancies. Blood, 2010, 116, 3949-3949.	0.6	0
251	Noninvasive Bioluminescent Imaging Demonstrates Long-Term Multilineage Engraftment of Ex Vivo-Expanded CD34-Selected Umbilical Cord Blood Cells. Stem Cells, 2009, 27, 1932-1940.	1.4	16
252	De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naive umbilical cord blood model of dendritic cell vaccination. Vaccine, 2009, 27, 1479-1484.	1.7	19

#	Article	IF	CITATIONS
253	Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood, 2009, 113, 2442-2450.	0.6	107
254	Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood, 2009, 114, 1958-1967.	0.6	235
255	Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood, 2009, 114, 4283-4292.	0.6	311
256	The Histone Deacetylase (HDAC) Inhibitor Entinostat (SNDX-275) Targets Hodgkin Lymphoma through a Dual Mechanism of Immune Modulation and Apoptosis Induction Blood, 2009, 114, 1562-1562.	0.6	5
257	Dramatic Reduction of Chronic Lymphocytic Leukemia (CLL) Cells Following Adoptive Transfer of Cord Blood (CB) Natural Killer (NK) Cells Using CB-Engrafted NOD-SCID IL2Rγnull (NSC) Mice as a Model Blood, 2009, 114, 2370-2370.	0.6	1
258	Cytotoxic T Lymphocytes (CTL) Specific for CMV, Adenovirus, and EBV Can Be Generated From Naive T Cells for Adoptive Immunotherapy Blood, 2009, 114, 504-504.	0.6	0
259	Adverse Events Following Infusion of T Cells for Adoptive Immunotherapy: A 10 Year Experience Blood, 2009, 114, 3212-3212.	0.6	0
260	Immune-Based Therapies Targeting Mage-A4 for Relapsed/Refractory Hodgkin's Lymphoma After Stem Cell Transplant Blood, 2009, 114, 4089-4089.	0.6	7
261	Ex Vivo IL-2 Expansion of CB-NK Cells Promotes Synergistic LFA-1 and CD2 Engagement at the NK Cell Lytic Immune Synapse; Implications for Adoptive CB-NK Cell Therapy in Acute Myeloid Leukemia Blood, 2009, 114, 3029-3029.	0.6	0
262	Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Practice and Research in Clinical Haematology, 2008, 21, 405-420.	0.7	24
263	Comparable Outcome of Alternative Donor and Matched Sibling Donor Hematopoietic Stem Cell Transplant for Children with Acute Lymphoblastic Leukemia in First or Second Remission Using Alemtuzumab in a Myeloablative Conditioning Regimen. Biology of Blood and Marrow Transplantation, 2008, 14, 1245-1252.	2.0	45
264	Successful Treatment of Stem Cell Graft Failure in Pediatric Patients Using a Submyeloablative Regimen of Campath-1H and Fludarabine. Biology of Blood and Marrow Transplantation, 2008, 14, 1298-1304.	2.0	21
265	Current understanding of the role of Epstein–Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leukemia and Lymphoma, 2008, 49, 27-34.	0.6	124
266	Identification of Hexon-Specific CD4 and CD8 T-Cell Epitopes for Vaccine and Immunotherapy. Journal of Virology, 2008, 82, 546-554.	1.5	129
267	Antitumor Activity of EBV-specific T Lymphocytes Transduced With a Dominant Negative TGF-β Receptor. Journal of Immunotherapy, 2008, 31, 500-505.	1.2	197
268	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	0.6	0
269	The "Side-Population―of Human Lymphoma Cells Have Increased Chemo-Resistance, Stem-Cell Like Properties and Are Potential Targets for Immunotherapy. Blood, 2008, 112, 2620-2620.	0.6	0
270	Selective Loss of a Putative Precursor Population of B-Chronic Lymphocytic Leukemia Cells Following Immunization with hCD40L/IL-2 Expressing Autologous Tumor Cells. Blood, 2008, 112, 3172-3172.	0.6	0

#	Article	IF	CITATIONS
271	Ex Vivo Expansion of Cord Blood Natural Killer Cells Overcomes Impaired Immune Synapse Formation and Effector Function in Acute Myeloid Leukemia. Blood, 2008, 112, 2905-2905.	0.6	0
272	Cytotoxic T Lymphocytes (CTL) Specific for Adenovirus and CMV Can Be Generated from Umbilical Cord Blood for Adoptive Immunotherapy. Blood, 2008, 112, 3505-3505.	0.6	0
273	Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110, 2838-2845.	0.6	266
274	Autologous Designer Antigen-presenting Cells by Gene Modification of T Lymphocyte Blasts With IL-7 and IL-12. Journal of Immunotherapy, 2007, 30, 506-516.	1.2	23
275	Adoptive immunotherapy for herpesviruses. , 2007, , 1318-1331.		2
276	Generation of Influenza HA-Specific Lymphocytes from Autologous Umbilical Cord Blood-Derived Dendritic Cells Blood, 2007, 110, 3875-3875.	0.6	0
277	Deficient Th-1 Responses from TNFα-Matured Dendritic Cells Blood, 2007, 110, 3839-3839.	0.6	0
278	In vivoexpansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leukemia and Lymphoma, 2006, 47, 837-842.	0.6	27
279	Administration of Latent Membrane Protein 2–Specific Cytotoxic T Lymphocytes to Patients with Relapsed Epstein-Barr Virus–Positive Lymphoma. Clinical Lymphoma and Myeloma, 2006, 6, 342-347.	1.4	19
280	Adenoviral Infections in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2006, 12, 243-251.	2.0	50
281	Assessing the Safety of Cytotoxic T Lymphocytes Transduced With a Dominant Negative Transforming Growth Factor-Î ² Receptor. Journal of Immunotherapy, 2006, 29, 250-260.	1.2	44
282	Adoptive Tâ€cell transfer in cancer immunotherapy. Immunology and Cell Biology, 2006, 84, 281-289.	1.0	38
283	Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine, 2006, 12, 1160-1166.	15.2	536
284	Presentation of Epstein Barr Virus (EBV) Epitopes by Activated Human Î ³ δT Cells Induces Peptide-Specific Cytolytic CD8+ T Cell Expansion Blood, 2006, 108, 1738-1738.	0.6	5
285	Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood, 2005, 105, 1898-1904.	0.6	344
286	Characterization of Latent Membrane Protein 2 Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. Journal of Immunology, 2005, 175, 4137-4147.	0.4	72
287	Hodgkin's disease: are you the type?. Lancet, The, 2005, 365, 2162-2163.	6.3	1
288	Outcome of Alternative Donor Transplantation for Severe Aplastic Anemia Can Be Comparable to Outcome with Matched Related Donors Blood, 2005, 106, 2052-2052.	0.6	0

#	Article	IF	CITATIONS
289	Transplantation from Matched Unrelated Donors (MUD) for Thalassemia and Other Congenital Red Cell Disorders Blood, 2005, 106, 2746-2746.	0.6	0
290	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	0.6	0
291	Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease. Journal of Experimental Medicine, 2004, 200, 1623-1633.	4.2	371
292	A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Therapy, 2004, 11, 81-91.	2.2	74
293	Adoptive immunotherapy for posttransplantation viral infections. Biology of Blood and Marrow Transplantation, 2004, 10, 143-155.	2.0	76
294	The Generation and Characterization of LMP2-Specific CTLs for Use as Adoptive Transfer From Patients With Relapsed EBV-Positive Hodgkin Disease. Journal of Immunotherapy, 2004, 27, 317-327.	1.2	96
295	LMP2-Cytotoxic T Lymphocyte Therapy for Relapsed EBV Positive Lymphoma Blood, 2004, 104, 3276-3276.	0.6	2
296	Adoptive T-Cell Therapy for EBV-Associated Post-Transplant Lymphoproliferative Disease. Acta Haematologica, 2003, 110, 139-148.	0.7	43
297	Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood, 2003, 102, 2292-2299.	0.6	139
298	Epstein-Barr virus–specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood, 2002, 99, 2009-2016.	0.6	185
299	Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	0.6	310
300	Gene therapy for paediatric leukaemia. Expert Opinion on Biological Therapy, 2001, 1, 663-674.	1.4	5
301	Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. International Journal of Cancer, 2001, 94, 228-236.	2.3	143
302	Gene-Marking studies of hematopoietic cells. International Journal of Hematology, 2001, 73, 14-22.	0.7	11
303	Adoptive Immunotherapy. , 0, , 920-935.		0
304	Immune therapy with cytotoxic T-lymphocytes for treatment of infections. , 0, , 611-625.		0
305	BCL-2 Antagonism Sensitizes CTL-Resistant HIV Reservoirs to Elimination <i>Ex Vivo</i> . SSRN Electronic Journal, 0, , .	0.4	2
306	Assessment of ST2 for Risk of Death Following Graft-versus-Host Disease in the Pediatric and Adult Age Groups. SSRN Electronic Journal, 0, , .	0.4	1

#	ARTICLE	IF	CITATIONS
307	A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies. SSRN Electronic Journal, 0, , .	0.4	1