Catherine M Bollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67445/publications.pdf

Version: 2024-02-01

307 papers

16,180 citations

64 h-index 117 g-index

315 all docs

 $\begin{array}{c} 315 \\ \text{docs citations} \end{array}$

315 times ranked

13692 citing authors

#	Article	IF	Citations
1	CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. Journal of Clinical Investigation, 2011, 121, 1822-1826.	8.2	876
2	Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115, 925-935.	1.4	721
3	Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine, 2006, 12, 1160-1166.	30.7	536
4	Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood, 2013, 121, 5113-5123.	1.4	507
5	Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122, 2965-2973.	1.4	470
6	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	1.6	433
7	Cord-Blood Engraftment with Ex Vivo Mesenchymal-Cell Coculture. New England Journal of Medicine, 2012, 367, 2305-2315.	27.0	430
8	Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease. Journal of Experimental Medicine, 2004, 200, 1623-1633.	8.5	371
9	Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood, 2005, 105, 1898-1904.	1.4	344
10	Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood, 2009, 114, 4283-4292.	1.4	311
11	Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	1.4	310
12	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	8.2	301
13	Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110, 2838-2845.	1.4	266
14	Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood, 2011, 117, 5835-5849.	1.4	241
15	Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood, 2009, 114, 1958-1967.	1.4	235
16	T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature Reviews Clinical Oncology, 2012, 9, 510-519.	27.6	230
17	Adoptive Transfer of EBV-specific T Cells Results in Sustained Clinical Responses in Patients With Locoregional Nasopharyngeal Carcinoma. Journal of Immunotherapy, 2010, 33, 983-990.	2.4	201
18	Antitumor Activity of EBV-specific T Lymphocytes Transduced With a Dominant Negative TGF-Î ² Receptor. Journal of Immunotherapy, 2008, 31, 500-505.	2.4	197

#	Article	IF	Citations
19	Epstein-Barr virus–specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood, 2002, 99, 2009-2016.	1.4	185
20	Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 45-63.	27.6	178
21	T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood, 2016, 127, 3331-3340.	1.4	177
22	Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood, 2010, 116, 4700-4702.	1.4	176
23	Ultra Low-Dose IL-2 for GVHD Prophylaxis after Allogeneic Hematopoietic Stem Cell Transplantation Mediates Expansion of Regulatory T Cells without Diminishing Antiviral and Antileukemic Activity. Clinical Cancer Research, 2014, 20, 2215-2225.	7.0	176
24	Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. British Journal of Haematology, 2017, 177, 457-466.	2.5	158
25	Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. Journal of Clinical Investigation, 2018, 128, 876-889.	8.2	157
26	Rituximab for High-Risk, Mature B-Cell Non-Hodgkin's Lymphoma in Children. New England Journal of Medicine, 2020, 382, 2207-2219.	27.0	157
27	Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity. PLoS ONE, 2013, 8, e76781.	2.5	155
28	Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. International Journal of Cancer, 2001, 94, 228-236.	5.1	143
29	Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood, 2003, 102, 2292-2299.	1.4	139
30	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	1.6	137
31	Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, 2305-2321.	2.0	132
32	Identification of Hexon-Specific CD4 and CD8 T-Cell Epitopes for Vaccine and Immunotherapy. Journal of Virology, 2008, 82, 546-554.	3.4	129
33	Current understanding of the role of Epstein–Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leukemia and Lymphoma, 2008, 49, 27-34.	1.3	124
34	Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 771-781.	3.3	122
35	Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain, Behavior, and Immunity, 2014, 39, 160-171.	4.1	121
36	Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood, 2015, 125, 2885-2892.	1.4	118

#	Article	lF	CITATIONS
37	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	2.9	117
38	SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood, 2020, 136, 2905-2917.	1.4	108
39	Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood, 2009, 113, 2442-2450.	1.4	107
40	Ultra-low Dose Interleukin-2 Promotes Immune-modulating Function of Regulatory T Cells and Natural Killer Cells in Healthy Volunteers. Molecular Therapy, 2014, 22, 1388-1395.	8.2	106
41	Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood, 2010, 115, 2695-2703.	1.4	105
42	Outcomes of adults and children with primary mediastinal Bâ€cell lymphoma treated with doseâ€adjusted <scp>EPOCH</scp> â€R. British Journal of Haematology, 2017, 179, 739-747.	2.5	101
43	Most Closely HLA-Matched Allogeneic Virus Specific Cytotoxic T-Lymphocytes (CTL) to Treat Persistent Reactivation or Infection with Adenovirus, CMV and EBV After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2010, 116, 829-829.	1.4	98
44	Cord blood natural killer cells expressing a dominant negative TGF- \hat{l}^2 receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy, 2017, 19, 408-418.	0.7	97
45	The Generation and Characterization of LMP2-Specific CTLs for Use as Adoptive Transfer From Patients With Relapsed EBV-Positive Hodgkin Disease. Journal of Immunotherapy, 2004, 27, 317-327.	2.4	96
46	CMV-specific T cells generated from na \tilde{A} -ve T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	12.4	93
47	Expanded Cytotoxic T-cell Lymphocytes Target the Latent HIV Reservoir. Journal of Infectious Diseases, 2015, 212, 258-263.	4.0	86
48	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019, 54, 1868-1880.	2.4	86
49	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019. 25. e76-e85.	2.0	85
50	ExÂvivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγnull mice. Experimental Hematology, 2012, 40, 445-456.	0.4	84
51	Generation of Tumor Antigen-Specific T Cell Lines from Pediatric Patients with Acute Lymphoblastic Leukemiaâ€"Implications for Immunotherapy. Clinical Cancer Research, 2013, 19, 5079-5091.	7.0	81
52	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	8.2	80
53	\hat{I}^2 2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain, Behavior, and Immunity, 2018, 74, 143-153.	4.1	80
54	Reduced-intensity conditioning for hematopoietic cell transplant for HLH and primary immune deficiencies. Blood, 2018, 132, 1438-1451.	1.4	78

#	Article	IF	CITATIONS
55	Pediatric Lymphomas and Histiocytic Disorders of Childhood. Pediatric Clinics of North America, 2015, 62, 139-165.	1.8	77
56	BCL-2 antagonism sensitizes cytotoxic T cell–resistant HIV reservoirs to elimination ex vivo. Journal of Clinical Investigation, 2020, 130, 2542-2559.	8.2	77
57	Adoptive immunotherapy for posttransplantation viral infections. Biology of Blood and Marrow Transplantation, 2004, 10, 143-155.	2.0	76
58	Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy, 2010, 12, 743-749.	0.7	75
59	Concise Review: Umbilical Cord Blood Transplantation: Past, Present, and Future. Stem Cells Translational Medicine, 2014, 3, 1435-1443.	3.3	75
60	Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica, 2016, 101, 531-540.	3.5	75
61	A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Therapy, 2004, 11, 81-91.	4.6	74
62	Characterization of Latent Membrane Protein 2 Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. Journal of Immunology, 2005, 175, 4137-4147.	0.8	72
63	Improving T-cell Therapy for Relapsed EBV-Negative Hodgkin Lymphoma by Targeting Upregulated MAGE-A4. Clinical Cancer Research, 2011, 17, 7058-7066.	7.0	72
64	Virus-Specific T Cells for the Immunocompromised Patient. Frontiers in Immunology, 2017, 8, 1272.	4.8	72
65	How I treat T-cell chronic active Epstein-Barr virus disease. Blood, 2018, 131, 2899-2905.	1.4	72
66	Controlling Cytomegalovirus: Helping the Immune System Take the Lead. Viruses, 2014, 6, 2242-2258.	3.3	66
67	The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy, 2014, 16, 149-159.	0.7	66
68	A novel latent membrane 2 transcript expressed in Epstein-Barr virus–positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood, 2010, 116, 3695-3704.	1.4	63
69	Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. Journal of Immunotherapy, 2012, 35, 159-168.	2.4	59
70	Cord Blood Natural Killer Cells Exhibit Impaired Lytic Immunological Synapse Formation That Is Reversed With IL-2 Exvivo Expansion. Journal of Immunotherapy, 2010, 33, 684-696.	2.4	58
71	Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy. Nanomedicine, 2016, 11, 1759-1767.	3.3	56
72	Immunotherapy of Relapsed and Refractory Solid Tumors With Ex Vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. Journal of Clinical Oncology, 2019, 37, 2349-2359.	1.6	56

#	Article	IF	CITATIONS
73	Third-party umbilical cord blood–derived regulatory T cells prevent xenogenic graft-versus-host disease. Cytotherapy, 2014, 16, 90-100.	0.7	53
74	The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans. Brain, Behavior, and Immunity, 2014, 39, 142-151.	4.1	53
75	Engineering the $TGF\hat{l}^2$ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clinical Cancer Research, 2019, 25, 4400-4412.	7.0	52
76	General and Virus-Specific Immune Cell Reconstitution after Double Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1284-1290.	2.0	51
77	Adenoviral Infections in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2006, 12, 243-251.	2.0	50
78	Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy, 2011, 13, 976-986.	0.7	50
79	Post-Transplant Lymphoproliferative Disease in Pediatric Solid Organ Transplant Recipients. Pediatric Hematology and Oncology, 2013, 30, 520-531.	0.8	50
80	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	1.4	49
81	Introduction to a review series on therapeutic antibodies. Blood, 2018, 131, 1-1.	1.4	47
82	Broadly-specific Cytotoxic T Cells Targeting Multiple HIV Antigens Are Expanded From HIV+ Patients: Implications for Immunotherapy. Molecular Therapy, 2015, 23, 387-395.	8.2	46
83	Comparable Outcome of Alternative Donor and Matched Sibling Donor Hematopoietic Stem Cell Transplant for Children with Acute Lymphoblastic Leukemia in First or Second Remission Using Alemtuzumab in a Myeloablative Conditioning Regimen. Biology of Blood and Marrow Transplantation, 2008, 14, 1245-1252.	2.0	45
84	Matched Related and Unrelated Donor Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency. Biology of Blood and Marrow Transplantation, 2015, 21, 1037-1045.	2.0	45
85	Virus-specific T-cell therapies for patients with primary immune deficiency. Blood, 2020, 135, 620-628.	1.4	45
86	Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody Deficiency. Journal of Clinical Immunology, 2021, 41, 1146-1153.	3.8	45
87	Children's Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. Journal of Clinical Oncology, 2022, 40, 2106-2118.	1.6	45
88	Assessing the Safety of Cytotoxic T Lymphocytes Transduced With a Dominant Negative Transforming Growth Factor- \hat{l}^2 Receptor. Journal of Immunotherapy, 2006, 29, 250-260.	2.4	44
89	Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma. Leukemia and Lymphoma, 2010, 51, 870-880.	1.3	44
90	Adoptive T-Cell Therapy for EBV-Associated Post-Transplant Lymphoproliferative Disease. Acta Haematologica, 2003, 110, 139-148.	1.4	43

#	Article	IF	Citations
91	T-cell therapies for HIV. Immunotherapy, 2013, 5, 407-414.	2.0	43
92	Rare Pediatric Non-Hodgkin Lymphomas: A Report From Children's Oncology Group Study ANHL 04B1. Pediatric Blood and Cancer, 2016, 63, 794-800.	1.5	43
93	Improving T-Cell Therapy for Epstein-Barr Virus Lymphoproliferative Disorders. Journal of Clinical Oncology, 2013, 31, 5-7.	1.6	42
94	Complementation of Antigen-presenting Cells to Generate T Lymphocytes With Broad Target Specificity. Journal of Immunotherapy, 2014, 37, 193-203.	2.4	42
95	Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment. Cytotherapy, 2014, 16, 84-89.	0.7	42
96	Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children's Oncology Group AALL0434. Journal of Clinical Oncology, 2020, 38, 3062-3070.	1.6	42
97	Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALCL: results of COG trial ANHL12P1. Blood, 2021, 137, 3595-3603.	1.4	40
98	Production of good manufacturing practice-grade cytotoxic T lymphocytes specific for Epstein–Barr virus, cytomegalovirus and adenovirus to prevent or treat viral infections post-allogeneic hematopoietic stem cell transplant. Cytotherapy, 2012, 14, 7-11.	0.7	39
99	ACCELERATE and European Medicine Agency Paediatric Strategy Forum for medicinal product development for mature B-cell malignancies in children. European Journal of Cancer, 2019, 110, 74-85.	2.8	39
100	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	3.8	39
101	Adoptive Tâ€cell transfer in cancer immunotherapy. Immunology and Cell Biology, 2006, 84, 281-289.	2.3	38
102	Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: Impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain, Behavior, and Immunity, 2015, 49, 59-65.	4.1	38
103	Toward a Rapid Production of Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Molecular Therapy - Methods and Clinical Development, 2017, 5, 13-21.	4.1	38
104	Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exercise and Sport Sciences Reviews, 2017, 45, 163-172.	3.0	37
105	Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, 13-18.	2.0	37
106	T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy, 2016, 18, 931-942.	0.7	36
107	Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the \hat{I}^2 2-adrenergic receptor. Brain, Behavior, and Immunity, 2018, 68, 66-75.	4.1	36
108	Systemic \hat{l}^2 -Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of $\hat{V}^39\hat{V}^2$ T-Cells. Frontiers in Immunology, 2019, 10, 3082.	4.8	36

#	Article	IF	CITATIONS
109	Human cytomegalovirus infection and the immune response to exercise. Exercise Immunology Review, 2016, 22, 8-27.	0.4	36
110	Children's Oncology Group's 2013 blueprint for research: Nonâ€Hodgkin lymphoma. Pediatric Blood and Cancer, 2013, 60, 979-984.	1.5	35
111	Hodgkin Disease and the Role of the Immune System. Pediatric Hematology and Oncology, 2011, 28, 176-186.	0.8	34
112	Functionally Active HIV-Specific T Cells that Target Gag and Nef Can Be Expanded from Virus-Na \tilde{A}^- ve Donors and Target a Range of Viral Epitopes: Implications for a Cure Strategy after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 536-541.	2.0	34
113	Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy, 2016, 18, 1515-1524.	0.7	33
114	HIV-Specific, ExÂVivo Expanded T Cell Therapy: Feasibility, Safety, and Efficacy in ART-Suppressed HIV-Infected Individuals. Molecular Therapy, 2018, 26, 2496-2506.	8.2	32
115	Medulloblastoma rendered susceptible to NK-cell attack by $TGF\hat{l}^2$ neutralization. Journal of Translational Medicine, 2019, 17, 321.	4.4	32
116	Quantitative activation suppression assay to evaluate human bone marrow–derived mesenchymal stromal cell potency. Cytotherapy, 2015, 17, 1675-1686.	0.7	31
117	T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica, 2015, 100, 709-719.	3.5	30
118	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	1.6	30
119	Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine, 2017, 23, 52-58.	6.1	29
120	Tâ€cell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	2.5	29
121	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.7	29
122	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	8.2	28
123	In vivoexpansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leukemia and Lymphoma, 2006, 47, 837-842.	1.3	27
124	Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy, 2010, 12, 713-720.	0.7	27
125	Adoptive T Cell Therapy for Epstein–Barr Virus Complications in Patients With Primary Immunodeficiency Disorders. Frontiers in Immunology, 2018, 9, 556.	4.8	27
126	Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Advances, 2019, 3, 2057-2068.	5.2	27

#	Article	IF	Citations
127	A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exercise Immunology Review, 2015, 21, 144-53.	0.4	27
128	Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: a phase I clinical trial protocol (ENABLE). BMJ Open, 2020, 10, e034629.	1.9	26
129	Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Advances, 2021, 5, 3309-3321.	5.2	26
130	Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein–Barr virus-associated lymphoma. Cytotherapy, 2011, 13, 518-522.	0.7	25
131	Pediatric Burkitt's Lymphoma and Diffuse B-Cell Lymphoma: Are Surveillance Scans Required?. Pediatric Hematology and Oncology, 2014, 31, 253-257.	0.8	25
132	Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma. Nanomaterials, 2020, 10, 161.	4.1	25
133	Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood, 2021, 137, 1777-1791.	1.4	25
134	Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nature Communications, 2021, 12, 6689.	12.8	25
135	Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Practice and Research in Clinical Haematology, 2008, 21, 405-420.	1.7	24
136	A New Method for Reactivating and Expanding T Cells Specific for Rhizopus oryzae. Molecular Therapy - Methods and Clinical Development, 2018, 9, 305-312.	4.1	24
137	Designing Magnetically Responsive Biohybrids Composed of Cord Blood-Derived Natural Killer Cells and Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2019, 30, 552-560.	3.6	24
138	Autologous Designer Antigen-presenting Cells by Gene Modification of T Lymphocyte Blasts With IL-7 and IL-12. Journal of Immunotherapy, 2007, 30, 506-516.	2.4	23
139	A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cellular Immunology, 2015, 295, 52-59.	3.0	23
140	A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy. Scientific Reports, 2016, 6, 25852.	3.3	22
141	Successful Treatment of Stem Cell Graft Failure in Pediatric Patients Using a Submyeloablative Regimen of Campath-1H and Fludarabine. Biology of Blood and Marrow Transplantation, 2008, 14, 1298-1304.	2.0	21
142	The Development of a Myeloablative, Reduced-Toxicity, Conditioning Regimen for Cord Blood Transplantation. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, e1-e5.	0.4	21
143	A single exercise bout augments adenovirus-specific T-cell mobilization and function. Physiology and Behavior, 2018, 194, 56-65.	2.1	21
144	Cell therapies for hematological malignancies: don't forget non-gene-modified t cells!. Blood Reviews, 2018, 32, 203-224.	5.7	21

#	Article	IF	CITATIONS
145	Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus. Journal of Visualized Experiments, 2012, , e3627.	0.3	20
146	Cytotoxic T lymphocytes for leukemia and lymphoma. Hematology American Society of Hematology Education Program, 2014, 2014, 565-569.	2.5	20
147	Engineering cord blood to improve engraftment after cord blood transplant. Stem Cell Investigation, 2017, 4, 41-41.	3.0	20
148	Administration of Latent Membrane Protein 2–Specific Cytotoxic T Lymphocytes to Patients with Relapsed Epstein-Barr Virus–Positive Lymphoma. Clinical Lymphoma and Myeloma, 2006, 6, 342-347.	1.4	19
149	De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naive umbilical cord blood model of dendritic cell vaccination. Vaccine, 2009, 27, 1479-1484.	3.8	19
150	Virus-specific T-cell therapy to treat BK polyomavirus infection in bone marrow and solid organ transplant recipients. Blood Advances, 2020, 4, 5745-5754.	5.2	19
151	The generation and application of antigen-specific TÂcell therapies for cancer and viral-associated disease. Molecular Therapy, 2022, 30, 2130-2152.	8.2	19
152	Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT. Blood Advances, 2022, 6, 2520-2534.	5.2	19
153	Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy, 2015, 17, 749-755.	0.7	18
154	HIV-Specific T Cells Generated from Naive T Cells Suppress HIV InÂVitro and Recognize Wide Epitope Breadths. Molecular Therapy, 2018, 26, 1435-1446.	8.2	18
155	Dose-Adjusted Etoposide, Doxorubicin, and Cyclophosphamide With Vincristine and Prednisone Plus Rituximab Therapy in Children and Adolescents With Primary Mediastinal B-Cell Lymphoma: A Multicenter Phase II Trial. Journal of Clinical Oncology, 2021, 39, 3716-3724.	1.6	18
156	Sobering realities of surviving Hodgkin Lymphoma. Blood, 2011, 117, 1772-1773.	1.4	17
157	EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood, 2022, 139, 983-994.	1.4	17
158	Noninvasive Bioluminescent Imaging Demonstrates Long-Term Multilineage Engraftment of Ex Vivo-Expanded CD34-Selected Umbilical Cord Blood Cells. Stem Cells, 2009, 27, 1932-1940.	3.2	16
159	Cord Blood Graft Engineering. Biology of Blood and Marrow Transplantation, 2013, 19, S74-S78.	2.0	16
160	Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. Therapeutic Advances in Hematology, 2015, 6, 295-307.	2.5	16
161	EBV-Directed T Cell Therapeutics for EBV-Associated Lymphomas. Methods in Molecular Biology, 2017, 1532, 255-265.	0.9	16
162	Virus-Specific T Cells: Current and Future Use in Primary Immunodeficiency Disorders. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 809-818.	3.8	16

#	Article	IF	CITATIONS
163	HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. Molecular Therapy - Methods and Clinical Development, 2020, 16, 11-20.	4.1	16
164	NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplantation and Cellular Therapy, 2021, 27, 21-35.	1.2	16
165	Multi-Virus-Specific T-Cell Therapy For Patients After Hematopoietic Stem Cell and Cord Blood Transplantation. Blood, 2013, 122, 140-140.	1.4	16
166	Challenges in the harmonization of immune monitoring studies and trial design for cell-based therapies in the context of hematopoietic cell transplantation for pediatric cancer patients. Cytotherapy, 2015, 17, 1667-1674.	0.7	15
167	Human papilloma virus–specific T cells can be generated from naÃ⁻ve T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy, 2018, 20, 385-393.	0.7	15
168	Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. Journal of Infectious Diseases, 2020, 221, 578-588.	4.0	15
169	Assessment of ST2 for risk of death following graft-versus-host disease in pediatric and adult age groups. Blood, 2020, 135, 1428-1437.	1.4	15
170	Imaging of subclinical haemopoiesis after stem-cell transplantation in patients with haematological malignancies: a prospective pilot study. Lancet Haematology,the, 2018, 5, e44-e52.	4.6	14
171	Mesenchymal Stem Cell (MSC) Based Cord Blood (CB) Expansion (Exp) Leads to Rapid Engraftment of Platelets and Neutrophils. Blood, 2010, 116, 362-362.	1.4	14
172	SARS-CoV-2-Specific T Cell Responses Are Stronger in Children With Multisystem Inflammatory Syndrome Compared to Children With Uncomplicated SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 793197.	4.8	14
173	Novel Cord Blood Transplant Therapies. Biology of Blood and Marrow Transplantation, 2011, 17, S39-S45.	2.0	13
174	Cellular therapy for sickle cell disease. Cytotherapy, 2016, 18, 1360-1369.	0.7	13
175	ROR1 and ROR2â€"novel targets for neuroblastoma. Pediatric Hematology and Oncology, 2019, 36, 352-364.	0.8	13
176	Immunotherapy for Lymphoma Using T Cells Targeting Multiple Tumor Associated Antigens. Blood, 2015, 126, 186-186.	1.4	13
177	The coming of age of adoptive T-cell therapy for viral infection after stem cell transplantation. Annals of Translational Medicine, 2015, 3, 62.	1.7	13
178	Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Advances, 2022, 6, 2897-2907.	5.2	13
179	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	1.4	13
180	Enhancing Immune Reconstitution: From Bench to Bedside. Biology of Blood and Marrow Transplantation, 2013, 19, S79-S83.	2.0	12

#	Article	IF	Citations
181	Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Annals of Hematology, 2021, 100, 2529-2539.	1.8	12
182	Novel TCR-like CAR-T cells targeting an HLAâ^—0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia. Molecular Therapy - Methods and Clinical Development, 2021, 23, 296-306.	4.1	12
183	Gene-Marking studies of hematopoietic cells. International Journal of Hematology, 2001, 73, 14-22.	1.6	11
184	Scouting out the neighborhood in AIDS-related lymphoma. Blood, 2013, 122, 306-307.	1.4	11
185	Gene Modification of Human Natural Killer Cells Using a Retroviral Vector. Methods in Molecular Biology, 2016, 1441, 203-213.	0.9	11
186	Allogeneic bone marrow transplantation with post-transplant cyclophosphamide for patients with HIV and haematological malignancies: a feasibility study. Lancet HIV, the, 2020, 7, e602-e610.	4.7	11
187	Tumor-associated antigen–specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Advances, 2022, 6, 473-485.	5.2	11
188	High risk of relapsed disease in patients with NK/T-cell chronic active Epstein-Barr virus disease outside of Asia. Blood Advances, 2022, 6, 452-459.	5.2	11
189	Off-the-Shelf Third-Party Virus-Specific T Cell Therapy to Treat JC Polyomavirus Infection in Hematopoietic Stem Cell Transplantation Recipients. Transplantation and Cellular Therapy, 2022, 28, 116.e1-116.e7.	1.2	11
190	T-Cell Therapies for Epstein-Barr Virus–Associated Lymphomas. Pediatric Hematology and Oncology, 2011, 28, 627-639.	0.8	10
191	Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy, 2014, 16, 1153-1157.	0.7	10
192	Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders. Current Allergy and Asthma Reports, 2017, 17, 3.	5.3	10
193	T-cell therapies for T-cell lymphoma. Cytotherapy, 2019, 21, 935-942.	0.7	10
194	Generation of Zika virus–specific T cells from seropositive and virus-naÃ⁻ve donors for potential use as an autologous or "off-the-shelf―immunotherapeutic. Cytotherapy, 2019, 21, 840-855.	0.7	10
195	Driving the CAR to the Bone Marrow Transplant Program. Current Hematologic Malignancy Reports, 2019, 14, 561-569.	2.3	10
196	Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 78-88.	4.1	10
197	Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy, 2021, 23, 65-76.	0.7	10
198	Cranial Radiation Can be Eliminated in Most Children with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and Bortezomib Potentially Improves Survival in Children with T-Cell Lymphoblastic Lymphoma (T-LL): Results of Children's Oncology Group (COG) Trial AALL1231. Blood, 2020, 136, 11-12.	1.4	10

#	Article	IF	CITATIONS
199	PR1-specific cytotoxic T lymphocytes are relatively frequent in umbilical cord blood and can be effectively expanded to target myeloid leukemia. Cytotherapy, 2016, 18, 995-1001.	0.7	9
200	Beyond Chemotherapy: Checkpoint Inhibition and Cell-Based Therapy in Non-Hodgkin Lymphoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 592-603.	3.8	9
201	A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies. Journal of Experimental Medicine, 2021, 218, .	8.5	9
202	Immunotherapy: opportunities, risks and future perspectives. Cytotherapy, 2014, 16, S120-S129.	0.7	8
203	Will Post-Transplantation Cell Therapies for Pediatric Patients Become Standard of Care?. Biology of Blood and Marrow Transplantation, 2015, 21, 402-411.	2.0	8
204	Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 298.	3.9	8
205	Phase II study of ex vivo expanded cord blood natural killer cells for multiple myeloma Journal of Clinical Oncology, 2018, 36, 8006-8006.	1.6	8
206	Developing T-cell therapies for lymphoma without receptor engineering. Blood Advances, 2017, 1, 2579-2590.	5.2	7
207	Reprint of: Virus-Specific T Cells: Broadening Applicability. Biology of Blood and Marrow Transplantation, 2018, 24, S1-S6.	2.0	7
208	Introduction to a review series on emerging immunotherapies for hematologic diseases. Blood, 2018, 131, 2617-2620.	1.4	7
209	Cancer Moonshot Immuno-Oncology Translational Network (IOTN): accelerating the clinical translation of basic discoveries for improving immunotherapy and immunoprevention of cancer., 2020, 8, e000796.		7
210	Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy, 2021, 23, 694-703.	0.7	7
211	Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Current Drug Targets, 2017, 18, 271-280.	2.1	7
212	Immune-Based Therapies Targeting Mage-A4 for Relapsed/Refractory Hodgkin's Lymphoma After Stem Cell Transplant Blood, 2009, 114, 4089-4089.	1.4	7
213	Antiviral T Cells for Adenovirus in the Pretransplant Period: A Bridge Therapy for Severe Combined Immunodeficiency. Biology of Blood and Marrow Transplantation, 2018, 24, 1944-1946.	2.0	6
214	Defining the Inflammatory Plasma Proteome in Pediatric Hodgkin Lymphoma. Cancers, 2020, 12, 3603.	3.7	6
215	Hematopoietic Cell Transplantation: Practice Predictions for the Year 2023. Transplantation and Cellular Therapy, 2021, 27, 183.e1-183.e7.	1,2	6
216	Spike-directed vaccination elicits robust spike-specific T-cell response, including to mutant strains. Cytotherapy, 2022, 24, 10-15.	0.7	6

#	Article	IF	CITATIONS
217	Gene therapy for paediatric leukaemia. Expert Opinion on Biological Therapy, 2001, 1, 663-674.	3.1	5
218	Aggressive peripheral CD70â€positive tâ€cell lymphoma associated with severe chronic active EBV infection. Pediatric Blood and Cancer, 2012, 59, 758-761.	1.5	5
219	Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT. Cytotherapy, 2017, 19, e3.	0.7	5
220	Characterization of natural killer cells expressing markers associated with maturity and cytotoxicity in children and young adults with sickle cell disease. Pediatric Blood and Cancer, 2019, 66, e27601.	1.5	5
221	Complement inhibition does not impair the clinical antiviral capabilities of virus-specific T-cell therapy. Blood Advances, 2020, 4, 3252-3257.	5.2	5
222	The effects of \hat{l}^21 and \hat{l}^21+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress and Chaperones, 2020, 25, 993-1012.	2.9	5
223	Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Review of Clinical Immunology, 2021, 17, 643-659.	3.0	5
224	Presentation of Epstein Barr Virus (EBV) Epitopes by Activated Human Î ³ δT Cells Induces Peptide-Specific Cytolytic CD8+ T Cell Expansion Blood, 2006, 108, 1738-1738.	1.4	5
225	The Histone Deacetylase (HDAC) Inhibitor Entinostat (SNDX-275) Targets Hodgkin Lymphoma through a Dual Mechanism of Immune Modulation and Apoptosis Induction Blood, 2009, 114, 1562-1562.	1.4	5
226	Opportunities and challenges of proteomics in pediatric patients: Circulating biomarkers after hematopoietic stem cell transplantation as a successful example. Proteomics - Clinical Applications, 2014, 8, 837-850.	1.6	4
227	latrogenic immunodeficiency-associated lymphoproliferative disorder in a child with B-cell acute lymphoblastic leukemia. Pediatric Hematology and Oncology, 2019, 36, 309-316.	0.8	4
228	Mycobacteria-Specific T Cells May Be Expanded From Healthy Donors and Are Near Absent in Primary Immunodeficiency Disorders. Frontiers in Immunology, 2019, 10, 621.	4.8	4
229	T-Cell Therapeutics Targeting Human Parainfluenza Virus 3 Are Broadly Epitope Specific and Are Cross Reactive With Human Parainfluenza Virus 1. Frontiers in Immunology, 2020, 11, 575977.	4.8	4
230	Phase I Study to Improve Virus-Specific Immune Reconstitution After Cord Blood Transplantation Using Cord Blood-Derived Virus-Specific Cytotoxic T Lymphocytes. Blood, 2011, 118, 155-155.	1.4	4
231	Generation of Multi-Antigen Specific T Cells for Adoptive Immunotherapy of Myeloid Leukemia and Identification of MHC Class I and II-Restricted Peptides for WT1, Proteinase 3 and Human Neutrophil Elastase. Blood, 2011, 118, 2985-2985.	1.4	4
232	A biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation. Blood Advances, 2022, 6, 1866-1878.	5.2	4
233	Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific TÂcell therapy products. Molecular Therapy - Methods and Clinical Development, 2022, 25, 439-447.	4.1	4
234	T-cell therapy for cancer. Immunotherapy, 2012, 4, 347-350.	2.0	3

#	Article	IF	Citations
235	Highlights of the Third International Conference on Immunotherapy in Pediatric Oncology. Pediatric Hematology and Oncology, 2013, 30, 349-366.	0.8	3
236	Genomic and clinical characterization of early T-cell precursor lymphoblastic lymphoma. Blood Advances, 2021, 5, 2890-2900.	5.2	3
237	The Histone Deacetylase Inhibitor Entinostat (SNDX-275) Targets Hodgkin Lymphoma through a Dual Mechanism of Immune Modulation and Apoptosis Induction. Blood, 2010, 116, 2850-2850.	1.4	3
238	Ex vivo expanded multi-antigen specific lymphocytes for the treatment of solid tumors Journal of Clinical Oncology, 2018, 36, 3042-3042.	1.6	3
239	Adoptive immunotherapy for herpesviruses. , 2007, , 1318-1331.		2
240	Administration of LMP-specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive lymphoma post allogeneic stem cell transplant. Cytotherapy, 2015, 17, S18.	0.7	2
241	Introduction to a review series on advances in cell-based immune therapeutics in hematology. Blood, 2016, 127, 3293-3293.	1.4	2
242	Developing T-cell therapies for lymphoma without receptor engineering. Hematology American Society of Hematology Education Program, 2017, 2017, 622-631.	2.5	2
243	Malignant Lymphomas in Childhood. , 2018, , 1330-1342.e5.		2
244	Using Molecular Stratification for Smart Combination Therapies. Journal of Clinical Oncology, 2021, 39, 3527-3530.	1.6	2
245	Toxicity Profile of Brentuximab Vedotin in Combination with Chemotherapy for Newly Diagnosed Patients with ALK+ ALCL: A Children's Oncology Group Study ANHL12P1. Blood, 2018, 132, 1625-1625.	1.4	2
246	Lenalidomide Treatment Enhances Immunological Synapse Formation of Cord Blood Natural Killer Cells with B Cells Derived From Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1794-1794.	1.4	2
247	Improving Immune Reconstitution After Cord Blood Transplantation Using Ex Vivo Expanded Virus-Specific T Cells: A Phase I Clinical Study. Blood, 2012, 120, 224-224.	1.4	2
248	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	1.4	2
249	BCL-2 Antagonism Sensitizes CTL-Resistant HIV Reservoirs to Elimination <i>Ex Vivo</i> SSRN Electronic Journal, 0, , .	0.4	2
250	LMP2-Cytotoxic T Lymphocyte Therapy for Relapsed EBV Positive Lymphoma Blood, 2004, 104, 3276-3276.	1.4	2
251	Antigen-specific T cell responses correlate with decreased occurrence of acute GVHD in a multicenter contemporary cohort. Bone Marrow Transplantation, 2022, 57, 279-281.	2.4	2
252	Comparable transforming growth factor beta-mediated immune suppression in ex vivo-expanded natural killer cells from cord blood and peripheral blood: implications for adoptive immunotherapy. Cytotherapy, 2022, 24, 802-817.	0.7	2

#	Article	IF	CITATIONS
253	Hodgkin's disease: are you the type?. Lancet, The, 2005, 365, 2162-2163.	13.7	1
254	Reply to Sackstein. Experimental Hematology, 2012, 40, 519-520.	0.4	1
255	The 2013 Educational Supplement on Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, S1.	2.0	1
256	Administration of LMP-Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Lymphoma Post Allogeneic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2015, 21, S148.	2.0	1
257	Enhancing The Generation Of Adenovirus-Specific T Cells With Exercise For Immunotherapy. Medicine and Science in Sports and Exercise, 2016, 48, 86-87.	0.4	1
258	Increased Tumor Specific Cytotoxic T Cell Responses and Reversion to a Favorable Cytokine Profile after Treatment in Patients with Newly Diagnosed High Risk Hodgkin Lymphoma Treated on Children's Oncology Group Trial-AHOD1331. Blood, 2020, 136, 41-42.	1.4	1
259	Tumor Associated Antigen Specific T Cells Given in Combination with Nivolumab for the Treatment of Hodgkin Lymphoma. Blood, 2020, 136, 18-18.	1.4	1
260	Dramatic Reduction of Chronic Lymphocytic Leukemia (CLL) Cells Following Adoptive Transfer of Cord Blood (CB) Natural Killer (NK) Cells Using CB-Engrafted NOD-SCID IL2 \hat{R}^3 null (NSG) Mice as a Model Blood, 2009, 114, 2370-2370.	1.4	1
261	Allogeneic Virus-Specific T Cells with HLA Alloreactivity Do Not Produce Graft-Versus-Host Disease In Human Subjects. Blood, 2010, 116, 1252-1252.	1.4	1
262	CD137L Reverse the Immunological Synapse Defects of Natural Killer Cells in Acute Myeloid Leukemia. Blood, 2011, 118, 246-246.	1.4	1
263	Assessment of ST2 for Risk of Death Following Graft-versus-Host Disease in the Pediatric and Adult Age Groups. SSRN Electronic Journal, 0, , .	0.4	1
264	A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies. SSRN Electronic Journal, 0, , .	0.4	1
265	Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. , 2018, , 395-411.		1
266	Intensification of Chemotherapy Using a Modified BFM Backbone for Children, Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LL) Identifies Highly Chemorefractory Patients Who Benefit from Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2021, 138, 3487-3487.	1.4	1
267	Flow-based analysis of cell division identifies highly active populations within plasma products during mixed lymphocyte cultures. Blood Transfusion, 2021, 19, 456-466.	0.4	1
268	IMMU-19. Outcomes of Pediatric Patients with High-Risk CNS Tumors Treated with Multi-tumor associated antigen specific T cell (TAA-T) therapy: the ReMIND trial. Neuro-Oncology, 2022, 24, i85-i86.	1.2	1
269	Adoptive Immunotherapy. , 0, , 920-935.		0
270	Isolating cytomegalovirus-specific T cells for adoptive transfer: are we there yet?. Cytotherapy, 2010, 12, 857-858.	0.7	0

#	Article	IF	Citations
271	Immunologic special forces: anti-pathogen cytotoxic T-lymphocyte immunotherapy following hematopoietic stem cell transplantation. ImmunoTargets and Therapy, 2014, 3, 97.	5.8	0
272	A Change in the Editorial Office: Farewell from Catherine M. Bollard. Pediatric Hematology and Oncology, 2014, 31, 393-394.	0.8	0
273	Reply to S. Yuan et al. Journal of Clinical Oncology, 2014, 32, 2820-2821.	1.6	0
274	T-Cell Immunotherapy for Cancer. , 2015, , 389-410.		0
275	Directed T-cell therapies for leukemia and lymphoma after hematopoietic stem cell transplant: beyond chimeric antigen receptors. International Journal of Hematologic Oncology, 2015, 4, 99-111.	1.6	O
276	HIV Receives a "One Two Knockout Punch― Molecular Therapy, 2017, 25, 566-567.	8.2	0
277	Immune therapy with cytotoxic T-lymphocytes for treatment of infections. , 0, , 611-625.		0
278	Virus-Specific T Cells for Hematopoietic Stem Cell Transplantation. Current Stem Cell Reports, 2017, 3, 290-300.	1.6	0
279	Introduction to a How I Treat series on hematologic complications in pregnancy. Blood, 2020, 136, 2093-2093.	1.4	0
280	Introduction to a review series on understanding and treating primary immunodeficiency. Blood, 2020, 135, 591-591.	1.4	0
281	Preventative and Preemptive Strategies for EBV Infection and PTLD After HSCT., 2021,, 239-251.		0
282	Introduction to a review series on gene therapy and gene editing for sickle cell disease and hemophilia. Blood, 2021, 138, 913-913.	1.4	0
283	Outcome of Alternative Donor Transplantation for Severe Aplastic Anemia Can Be Comparable to Outcome with Matched Related Donors Blood, 2005, 106, 2052-2052.	1.4	0
284	Transplantation from Matched Unrelated Donors (MUD) for Thalassemia and Other Congenital Red Cell Disorders Blood, 2005, 106, 2746-2746.	1.4	0
285	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	1.4	0
286	Generation of Influenza HA-Specific Lymphocytes from Autologous Umbilical Cord Blood-Derived Dendritic Cells Blood, 2007, 110, 3875-3875.	1.4	0
287	Deficient Th-1 Responses from TNFα-Matured Dendritic Cells Blood, 2007, 110, 3839-3839.	1.4	0
288	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	1.4	0

#	Article	IF	Citations
289	The "Side-Population―of Human Lymphoma Cells Have Increased Chemo-Resistance, Stem-Cell Like Properties and Are Potential Targets for Immunotherapy. Blood, 2008, 112, 2620-2620.	1.4	O
290	Selective Loss of a Putative Precursor Population of B-Chronic Lymphocytic Leukemia Cells Following Immunization with hCD40L/IL-2 Expressing Autologous Tumor Cells. Blood, 2008, 112, 3172-3172.	1.4	0
291	Ex Vivo Expansion of Cord Blood Natural Killer Cells Overcomes Impaired Immune Synapse Formation and Effector Function in Acute Myeloid Leukemia. Blood, 2008, 112, 2905-2905.	1.4	O
292	Cytotoxic T Lymphocytes (CTL) Specific for Adenovirus and CMV Can Be Generated from Umbilical Cord Blood for Adoptive Immunotherapy. Blood, 2008, 112, 3505-3505.	1.4	0
293	Cytotoxic T Lymphocytes (CTL) Specific for CMV, Adenovirus, and EBV Can Be Generated From Naive T Cells for Adoptive Immunotherapy Blood, 2009, 114, 504-504.	1.4	0
294	Adverse Events Following Infusion of T Cells for Adoptive Immunotherapy: A 10 Year Experience Blood, 2009, 114, 3212-3212.	1.4	0
295	Ex Vivo IL-2 Expansion of CB-NK Cells Promotes Synergistic LFA-1 and CD2 Engagement at the NK Cell Lytic Immune Synapse; Implications for Adoptive CB-NK Cell Therapy in Acute Myeloid Leukemia Blood, 2009, 114, 3029-3029.	1.4	0
296	Targeting Chronic Lymphocytic Leukemia with Cord Blood NK Cells In NSG Model. Blood, 2010, 116, 2453-2453.	1.4	0
297	Antigen Presenting Cell-Mediated Ex Vivo Expansion of Human Umbilical Cord Blood Cells Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity. Blood, 2010, 116, 2100-2100.	1.4	0
298	Anti-Viral Cytotoxic T-Lymphocyte Therapy. Blood, 2010, 116, SCI-50-SCI-50.	1.4	0
299	The Effects of Co-Stimulatory Endodomains on the Fate of T Cells Expressing a Tumor Directed Chimeric Antigen Receptor (CAR) In Human Subjects with B Cell Malignancies. Blood, 2010, 116, 3949-3949.	1.4	0
300	Towards Phase 2/3 Trials for Epstein - Barr Virus (EBV)-Associated Malignancies,. Blood, 2011, 118, 4043-4043.	1.4	0
301	Adoptive Immunotherapy with Autologous CD3/CD28-Costimulated T-Cells After Fludarabine-Based Chemotherapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2855-2855.	1.4	O
302	Whole genome sequencing of sporadic Burkitt lymphoma in HIV-infected and uninfected patients Journal of Clinical Oncology, 2013, 31, 8577-8577.	1.6	0
303	FLT Imaging Reveals Kinetics and Biology of Engraftment after Myeloablative HSCT. Blood, 2014, 124, 1147-1147.	1.4	0
304	A Novel Standardized Quantitative Suppression Assay Reveals a Diversity of Human Immune-Regulatory Cell Potency. Blood, 2014, 124, 316-316.	1.4	0
305	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	1.4	0
306	Robust immune responses to SARS-CoV-2 in a pediatric patient with B-Cell ALL receiving tisagenlecleucel. Pediatric Hematology and Oncology, 2022, , 1-9.	0.8	0

#	Article	IF	CITATIONS
307	Reply to R. Lakhotia et al. Journal of Clinical Oncology, 2022, , JCO2102912.	1.6	0