
Chang-Ro Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744476/publications.pdf Version: 2024-02-01

CHANC-ROLFF

#	Article	IF	CITATIONS
1	Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 2017, 7, 55.	3.9	671
2	Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology, 2016, 7, 895.	3.5	528
3	Strategies to Minimize Antibiotic Resistance. International Journal of Environmental Research and Public Health, 2013, 10, 4274-4305.	2.6	308
4	Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Frontiers in Cellular and Infection Microbiology, 2017, 7, 483.	3.9	299
5	Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Frontiers in Microbiology, 2019, 10, 953.	3.5	201
6	Structural Basis for Carbapenem-Hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance. International Journal of Molecular Sciences, 2015, 16, 9654-9692.	4.1	129
7	Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4124-4129.	7.1	120
8	Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp. Journal of the American Chemical Society, 2008, 130, 784-785.	13.7	96
9	Educational Effectiveness, Target, and Content for Prudent Antibiotic Use. BioMed Research International, 2015, 2015, 1-13.	1.9	70
10	Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. Journal of Microbiology and Biotechnology, 2019, 29, 1-10.	2.1	61
11	A Novel Fermentation/Respiration Switch Protein Regulated by Enzyme IIAGlc in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 31613-31621.	3.4	56
12	Potassium mediates <i>Escherichia coli</i> enzyme IIA ^{Ntr} â€dependent regulation of sigma factor selectivity. Molecular Microbiology, 2010, 78, 1468-1483.	2.5	56
13	Reciprocal regulation of the autophosphorylation of enzyme <scp>I^{Ntr}</scp> by glutamine and αâ€ketoglutarate in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 88, 473-485.	2.5	55
14	HPr antagonizes the anti-σ ⁷⁰ activity of Rsd in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21142-21147.	7.1	51
15	Requirement of the dephosphoâ€form of enzyme IIA ^{Ntr} for derepression of <i>Escherichia coli</i> Kâ€12 <i>ilvBN</i> expression. Molecular Microbiology, 2005, 58, 334-344.	2.5	49
16	Implications of agar and agarase in industrial applications of sustainable marine biomass. Applied Microbiology and Biotechnology, 2020, 104, 2815-2832.	3.6	49
17	<i>Salmonella</i> pathogenicity island 2 expression negatively controlled by EIIA ^{Ntr} –SsrB interaction is required for <i>Salmonella</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20506-20511.	7.1	48
18	Determination of protein phosphorylation by polyacrylamide gel electrophoresis. Journal of Microbiology, 2019, 57, 93-100.	2.8	35

CHANG-RO LEE

#	Article	IF	CITATIONS
19	Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Frontiers in Microbiology, 2015, 6, 828.	3.5	33
20	Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochemical and Biophysical Research Communications, 2011, 409, 556-561.	2.1	30
21	Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 2017, 101, 1965-1974.	3.6	30
22	The Importance of Porins and β-Lactamase in Outer Membrane Vesicles on the Hydrolysis of β-Lactam Antibiotics. International Journal of Molecular Sciences, 2020, 21, 2822.	4.1	30
23	RppH-dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli. Nucleic Acids Research, 2014, 42, 12746-12757.	14.5	27
24	Phosphorylation-Dependent Mobility Shift of Proteins on SDS-PAGE is Due to Decreased Binding of SDS. Bulletin of the Korean Chemical Society, 2013, 34, 2063-2066.	1.9	27
25	Fine-tuning of amino sugar homeostasis by EllANtr in Salmonella Typhimurium. Scientific Reports, 2016, 6, 33055.	3.3	26
26	Molecular characterization of <i>Streptomyces coelicolor</i> A(3) SCO6548 as a cellulose 1,4-β-cellobiosidase. FEMS Microbiology Letters, 2016, 363, fnv245.	1.8	23
27	Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Applied Microbiology and Biotechnology, 2019, 103, 8403-8411.	3.6	20
28	Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 2017, 181, 961-971.	2.9	19
29	Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. Microbiology (United Kingdom), 2015, 161, 1113-1123.	1.8	18
30	Biochemical Characterization of a Novel GH86 �ï;½-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 2018, 28, 284-292.	2.1	18
31	Genetic Evidence for Distinct Functions of Peptidoglycan Endopeptidases in Escherichia coli. Frontiers in Microbiology, 2020, 11, 565767.	3.5	17
32	ldentification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-l-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 2018, 102, 8855-8866.	3.6	16
33	Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in <i>Vibrio vulnificus</i> . Molecular Microbiology, 2019, 112, 266-279.	2.5	14
34	Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 2019, 189, 1-12.	2.9	14
35	Molecular Characterization of Xylobiose- and Xylopentaose-Producing β-1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2). Applied Biochemistry and Biotechnology, 2016, 180, 349-360.	2.9	10
36	Synthesis of Chalconeâ€Derived Heteroaromatics with Antibacterial Activities. ChemistrySelect, 2020, 5, 12421-12424.	1.5	8

CHANG-RO LEE

#	Article	IF	CITATIONS
37	The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner. Journal of Microbiology, 2021, 59, 666-674.	2.8	8
38	Increased expression of genes involved in uptake and degradation of murein tripeptide under nitrogen starvation in <i>Escherichia coli</i> . FEMS Microbiology Letters, 2016, 363, fnw136.	1.8	6
39	Phenotypic characterization of a conserved inner membrane protein YhcB in Escherichia coli. Journal of Microbiology, 2020, 58, 598-605.	2.8	6
40	Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance. Microbiology Spectrum, 0, , .	3.0	6
41	Effect of the RNA pyrophosphohydrolase RppH on envelope integrity in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	1.8	5
42	Molecular characterization of SCO0765 as a cellotriose releasing endo-β-1,4-cellulase from Streptomyces coelicolor A(3). Journal of Microbiology, 2016, 54, 626-631.	2.8	4
43	Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 2020, 30, 1659-1669.	2.1	4
44	Comment on: Current initiatives to improve prudent antibiotic use amongst school-aged children. Journal of Antimicrobial Chemotherapy, 2014, 69, 1726-1727.	3.0	1