Domenico Garozzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744257/publications.pdf

Version: 2024-02-01

160 papers

5,242 citations

⁷⁶³²⁶
40
h-index

62 g-index

170 all docs

 $\begin{array}{c} 170 \\ \\ \text{docs citations} \end{array}$

170 times ranked

5454 citing authors

#	Article	IF	CITATIONS
1	Î ² -Amyloid Monomers Are Neuroprotective. Journal of Neuroscience, 2009, 29, 10582-10587.	3.6	350
2	Molecular and Structural Characterization of Polydisperse Polymers and Copolymers by Combining MALDI-TOF Mass Spectrometry with GPC Fractionation. Macromolecules, 1995, 28, 7983-7989.	4.8	190
3	Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Analytical Chemistry, 1990, 62, 279-286.	6.5	170
4	DPM2â€CDG: A muscular dystrophy–dystroglycanopathy syndrome with severe epilepsy. Annals of Neurology, 2012, 72, 550-558.	5.3	121
5	Hypoglycosylation with increased fucosylation and branching of serum transferrin N-glycans in untreated galactosemia. Glycobiology, 2005, 15, 1268-1276.	2.5	107
6	Matrix-assisted laser desorption/ionization mass spectrometry of polysaccharides. Rapid Communications in Mass Spectrometry, 1995, 9, 937-941.	1.5	96
7	Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Mass Spectrometry, 2001, 36, 1031-1037.	1.6	95
8	New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Communications in Mass Spectrometry, 2004, 18, 392-398.	1.5	95
9	Primary thermal decomposition processes in aliphatic polyesters investigated by chemical ionization mass spectrometry. Macromolecules, 1986, 19, 1643-1649.	4.8	89
10	Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 2002, 37, 985-991.	1.6	89
11	Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nature Communications, 2014, 5, 5106.	12.8	88
12	CSF N-glycoproteomics for early diagnosis in Alzheimer's disease. Journal of Proteomics, 2016, 131, 29-37.	2.4	79
13	Primary thermal decomposition processes in aliphatic polyamides. Polymer Degradation and Stability, 1989, 23, 25-41.	5.8	74
14	Inclusion Networks of a Calix[5]arene-Based Exoditopic Receptor and Long-Chain Alkyldiammonium lons. Organic Letters, 2003, 5, 4025-4028.	4.6	66
15	A Calix[5]arene-Based Heterotetratopic Host for Molecular Recognition of Long-Chain, Ion-Paired α,ω-Alkanediyldiammonium Salts. Angewandte Chemie - International Edition, 2005, 44, 4892-4896.	13.8	66
16	New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. Rapid Communications in Mass Spectrometry, 2005, 19, 1829-1834.	1.5	64
17	MAN1B1 Deficiency: An Unexpected CDG-II. PLoS Genetics, 2013, 9, e1003989.	3.5	63
18	Linkage analysis in disaccharides by electrospray mass spectrometry. Carbohydrate Research, 1991, 221, 253-257.	2.3	61

#	Article	IF	CITATIONS
19	The Complete Structure and Pro-inflammatory Activity of the Lipooligosaccharide of the Highly Epidemic and Virulent Gram-Negative BacteriumBurkholderia cenocepacia ET-12 (Strain J2315). Chemistry - A European Journal, 2007, 13, 3501-3511.	3.3	61
20	Sequencing bacterial poly(.betahydroxybutyrate-cobetahydroxyvalerate) by partial methanolysis, HPLC fractionation, and fast-atom-bombardment mass spectrometry analysis. Macromolecules, 1989, 22, 2107-2111.	4.8	59
21	Multivalent binding of galactosylated cyclodextrin vesicles to lectin. Organic and Biomolecular Chemistry, 2004, 2, 957-960.	2.8	58
22	Mass spectral characterization and thermal decomposition mechanism of poly(dimethylsiloxane). Macromolecules, 1984, 17, 1312-1315.	4.8	57
23	Self-Assembly Dynamics of Modular Homoditopic Bis-calix[5]arenes and Long-Chain α,ï‰-Alkanediyldiammonium Components. Journal of Organic Chemistry, 2008, 73, 7280-7289.	3.2	57
24	Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease. Translational Research, 2014, 163, 593-602.	5.0	57
25	The Acylation and Phosphorylation Pattern of Lipid A from <i>Xanthomonas Campestris</i> Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. ChemBioChem, 2008, 9, 896-904.	2.6	56
26	Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. Journal of Medical Genetics, 2013, 50, 733-739.	3.2	55
27	Mechanism of thermal decomposition of nylon 66. Macromolecules, 1987, 20, 2991-2997.	4.8	52
28	Quantitative applications of matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry: Determination of copolymer composition in bacterial copolyesters. Rapid Communications in Mass Spectrometry, 1993, 7, 1033-1036.	1.5	51
29	Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Frontiers in Immunology, 2015, 6, 595.	4.8	51
30	Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13956-13960.	7.1	49
31	Glycomics of pediatric and adulthood diseases of the central nervous system. Journal of Proteomics, 2012, 75, 5123-5139.	2.4	47
32	Syntheses, Structures, and Anion-Binding Properties of Two Novel Calix[2]benzo[4]pyrroles. Chemistry - A European Journal, 2007, 13, 649-656.	3.3	46
33	Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. FASEB Journal, 2017, 31, 3467-3483.	0.5	46
34	Microstructure of bacterial poly (\hat{l}^2 -hydroxybutyrate-co- \hat{l}^2 -hydroxyvalerate) by fast atom bombardment mass spectrometry analysis of the partial pyrolysis products. Macromolecules, 1991, 24, 1231-1236.	4.8	44
35	Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDIâ€₹OF MS. Proteomics, 2008, 8, 3822-3832.	2.2	44
36	Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. Journal of Mass Spectrometry, 2011, 46, 1135-1142.	1.6	43

#	Article	IF	Citations
37	Bone Dysplasia as a Key Feature in Three Patients with a Novel Congenital Disorder of Glycosylation (CDG) Type II Due to a Deep Intronic Splice Mutation in TMEM165. JIMD Reports, 2012, 8, 145-152.	1.5	43
38	The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. Journal of Inherited Metabolic Disease, 2011, 34, 891-899.	3 . 6	42
39	Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohydrate Polymers, 2006, 65, 263-272.	10.2	41
40	Analytical degradation: An approach to the structural analysis of microbial polyesters by different methods. Journal of Analytical and Applied Pyrolysis, 1989, 16, 239-253.	5 . 5	40
41	Exopolysaccharides produced by a clinical strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydrate Research, 2003, 338, 2687-2695.	2.3	40
42	Identification of human tear fluid biomarkers in vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 254-260.	5.7	40
43	A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. Journal of Neurology, 2015, 262, 154-164.	3.6	40
44	The structure of the exocellular polysaccharide from the cyanobacterium Cyanospira capsulata. Carbohydrate Research, 1998, 307, 113-124.	2.3	39
45	SLC35A2 DG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Human Mutation, 2019, 40, 908-925.	2.5	39
46	Thermal decomposition processes in aliphatic-aromatic polyamides investigated by mass spectrometry. Macromolecules, 1986, 19, 2693-2699.	4.8	38
47	Study of the inclusion complexes of aromatic molecules with cyclodextrins using ionspray mass spectrometry. Carbohydrate Research, 1996, 290, 105-115.	2.3	38
48	Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli. Journal of Bacteriology, 2018, 200, .	2.2	36
49	Proteomics of gluten: mapping of subunit 1 Ax2* in Cheyenne cultivar by matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry, 2001, 15, 1129-1135.	1.5	35
50	Guest-induced capsular assembly of calix[5] arenes. Tetrahedron Letters, 2002, 43, 7663-7667.	1.4	35
51	Nâ€Linked Glycans of Chloroviruses Sharing a Core Architecture without Precedent. Angewandte Chemie - International Edition, 2016, 55, 654-658.	13.8	35
52	Structure of underivatized branched oligosaccharides by negative-ion fast-atom bombardment mass spectrometry. Rapid Communications in Mass Spectrometry, 1992, 6, 550-552.	1.5	34
53	New results on matrix-assisted laser desorption/ionization mass spectrometry of widely polydisperse hydrosoluble polymers. Rapid Communications in Mass Spectrometry, 2002, 16, 1599-1603.	1.5	34
54	A new mutation in COG7 extends the spectrum of COG subunit deficiencies. European Journal of Medical Genetics, 2009, 52, 303-305.	1.3	34

#	Article	IF	CITATIONS
55	Determination of linkage position in disaccharides by negative-ion fast-atom bombardment mass spectrometry. Rapid Communications in Mass Spectrometry, 1989, 3, 302-304.	1.5	33
56	Quantitative determination of $\hat{l}^2(1-2)$ cyclic glucans by matrix-assisted laser desorption mass spectrometry. Rapid Communications in Mass Spectrometry, 1994, 8, 358-360.	1.5	33
57	Sequencing of oligosaccharides by collision-induced dissociation matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 2000, 35, 1042-1048.	1.6	33
58	Structure Elucidation of the Highly Heterogeneous Lipid A from the Lipopolysaccharide of the Gram-Negative Extremophile BacteriumHalomonas Magadiensis Strain 21 M1. European Journal of Organic Chemistry, 2004, 2004, 2263-2271.	2.4	31
59	Mass spectrometry in the characterization of human genetic Nâ€glycosylation defects. Mass Spectrometry Reviews, 2009, 28, 517-542.	5.4	31
60	COG5-CDG with a Mild Neurohepatic Presentation. JIMD Reports, 2011, 3, 67-70.	1.5	31
61	From calixfurans to heterocyclophanes containing isopyrazole units. Tetrahedron, 2004, 60, 1895-1902.	1.9	30
62	The structure and proinflammatory activity of the lipopolysaccharide fromÂBurkholderiaÂmultivoransÂandÂthe differences between clonal strains colonizingÂpreÂandÂposttransplantedÂlungs. Glycobiology, 2008, 18, 871-881.	2.5	30
63	Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. Molecular Immunology, 2015, 63, 166-175.	2.2	30
64	Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of high molecular weight glutenin subunits 1Bx7 and 1Dy10 in Cheyenne cultivar. Rapid Communications in Mass Spectrometry, 2001, 15, 778-787.	1.5	29
65	Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG): Second Patient, Different Phenotype. JIMD Reports, 2011, 4, 103-108.	1.5	29
66	Identification of the ions produced by fast atom bombardment mass spectrometry in some polyesters and polyamides. Analytical Chemistry, 1987, 59, 2024-2027.	6.5	28
67	Discrimination of isomeric oligosaccharides and sequencing of unknowns by post source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 1561-1566.	1.5	27
68	A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. FEBS Journal, 2004, 271, 2691-2704.	0.2	26
69	Lower rim arylation of calix[n]arenes with extended perfluorinated domains. Tetrahedron Letters, 2006, 47, 9049-9052.	1.4	26
70	The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice. Carbohydrate Research, 2016, 427, 38-43.	2.3	26
71	The Lipid A fromRhodopseudomonas palustrisStrain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties. Chemistry - A European Journal, 2017, 23, 3637-3647.	3.3	26
72	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie - International Edition, 2021, 60, 10023-10031.	13.8	26

#	Article	IF	CITATIONS
73	Synthesis of 5,5â€~Bicalix[6]arene and 5,5â€~Bicalix[8]arene Systems. Journal of Organic Chemistry, 1999, 64, 8018-8020.	3.2	25
74	Full Structural Characterisation of the Lipooligosaccharide of aBurkholderiapyrrocinia Clinical Isolate. European Journal of Organic Chemistry, 2006, 2006, 4874-4883.	2.4	25
75	Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13. Journal of Lipid Research, 2007, 48, 1045-1051.	4.2	25
76	CSF Nâ€glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder. Autism Research, 2016, 9, 423-428.	3.8	25
77	Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2018, 8, 58.	3.9	25
78	Thermal decomposition processes in aromatic-aliphatic polyamides investigated by mass spectrometry. Journal of Polymer Science Part A, 1987, 25, 1049-1063.	2.3	24
79	Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy. Carbohydrate Research, 1999, 323, 139-146.	2.3	24
80	Chemistry and Biology of the Potent Endotoxin from a <i>Burkholderia dolosa</i> Clinical Isolate from a Cystic Fibrosis Patient. ChemBioChem, 2013, 14, 1105-1115.	2.6	24
81	Proteomics of gluten: mapping of the 1Bx7 glutenin subunit in Chinese Spring cultivar by matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry, 2005, 19, 2069-2074.	1.5	22
82	<scp>MALDlâ€MS</scp> profiling of serum <i>O</i> â€glycosylation and <i>N</i> â€glycosylation in <scp>COG5 DG</scp> . Journal of Mass Spectrometry, 2017, 52, 372-377.	1.6	22
83	Effect of methylation of \hat{l}^2 -cyclodextrin on the formation of inclusion complexes with aromatic compounds. An ionspray mass spectrometry investigation. Carbohydrate Research, 1997, 302, 1-6.	2.3	21
84	The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate Research, 2004, 339, 1985-1993.	2.3	21
85	Structural characterizations of lipids A by MS/MS of doubly charged ions on a hybrid linear ion trap/orbitrap mass spectrometer. Journal of Mass Spectrometry, 2008, 43, 478-484.	1.6	21
86	Structural determination of lipid A of the lipopolysaccharide from Pseudomonas reactans. FEBS Journal, 2002, 269, 2498-2505.	0.2	20
87	Complete Structural Elucidation of a Novel Lipooligosaccharide from the Outer Membrane of the Marine BacteriumShewanella pacifica. European Journal of Organic Chemistry, 2005, 2005, 2281-2291.	2.4	20
88	Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, an organic solvent tolerant Gram-negative bacterium. Carbohydrate Research, 2006, 341, 582-590.	2.3	20
89	Thermophiles as Potential Source of Novel Endotoxin Antagonists: the Full Structure and Bioactivity of theLipoâ€oligosaccharide from <i>Thermomonas hydrothermalis</i> . ChemBioChem, 2014, 15, 2146-2155.	2.6	20
90	HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases. Glycoconjugate Journal, 2021, 38, 201-211.	2.7	20

#	Article	IF	Citations
91	Odd-electron molecular ion and loss of toluene in fast atom bombardment mass spectra of some carotenoids. Organic Mass Spectrometry, 1990, 25, 137-140.	1.3	19
92	Identification of N-acetylglucosamine and 4-O-[1-carboxyethyl]mannose in the exopolysaccharide from Cyanospira capsulata. Carbohydrate Research, 1995, 270, 97-106.	2.3	19
93	Structural characterization of the carbohydrate backbone of the lipooligosaccharide of the marine bacterium Arenibacter certesii strain KMM 3941T. Carbohydrate Research, 2005, 340, 2540-2549.	2.3	19
94	Full structural characterization of Shigella flexneri M90T serotype 5 wild-type R-LPS and its ÂgalU mutant: glycine residue location in the inner core of the lipopolysaccharide. Glycobiology, 2007, 18, 260-269.	2.5	19
95	Investigation of bacterial resistance to the immune system response: Cepacian depolymerisation by reactive oxygen species. Innate Immunity, 2012, 18, 661-671.	2.4	19
96	Mass spectrometric characterization of poly(ethylene terephthalate-co-p-oxybenzoate). Journal of Polymer Science Part A, 1987, 25, 271-284.	2.3	18
97	The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Marine Drugs, 2017, 15, 201.	4.6	18
98	Structural Analysis of the Deep Rough Lipopolysaccharide from Gram Negative BacteriumAlteromonas macleodii ATCC 27126T: The First Finding of \hat{l}^2 -Kdo in the Inner Core of Lipopolysaccharides. European Journal of Organic Chemistry, 2006, 2006, 4710-4716.	2.4	16
99	Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG″a. American Journal of Medical Genetics, Part A, 2008, 146A, 2103-2108.	1.2	16
100	First structural characterization of Burkholderia vietnamiensis lipooligosaccharide from cystic fibrosis-associated lung transplantation strains. Glycobiology, 2009, 19, 1214-1223.	2.5	16
101	Recessive mutations in <i>SLC35A3</i> cause early onset epileptic encephalopathy with skeletal defects. American Journal of Medical Genetics, Part A, 2017, 173, 1119-1123.	1.2	16
102	ALG12-CDG: novel glycophenotype insights endorse the molecular defect. Glycoconjugate Journal, 2019, 36, 461-472.	2.7	16
103	Chemically modified tetranitro-oxacalix[4] arenes: Synthesis and conformational preferences of tetra-N-(1-octyl) ureido-oxacalix[4] arenes. Arkivoc, 2009, 2009, 199-211.	0.5	16
104	Fast atom bombardment mass spectrometry identification of oligomers contained in poly(.epsiloncaprolactam) and poly(butylene isophthalate). Macromolecules, 1987, 20, 1029-1032.	4.8	15
105	The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases. Journal of Biological Chemistry, 2019, 294, 5688-5699.	3.4	15
106	Identification of polymers by library search of pyrolysis mass spectra and pattern recognition analysis. Journal of Analytical and Applied Pyrolysis, 1985, 9, 1-17.	5 . 5	14
107	Primary thermal fragmentation processes in poly(lactic acid) investigated by positive and negative chemical ionization mass spectrometry. Polymer Degradation and Stability, 1986, 15, 143-149.	5.8	14
108	Borderline mental development in a congenital disorder of glycosylation (CDG) type Ia patient with multisystemic involvement (intermediate phenotype). Journal of Inherited Metabolic Disease, 2007, 30, 107-107.	3.6	14

#	Article	IF	CITATIONS
109	CSF N-Glycomics Using MALDI MS Techniques in Alzheimer's Disease. Methods in Molecular Biology, 2018, 1750, 75-91.	0.9	14
110	Use of hydroxyacetophenones as matrices for the analysis of high molecular weight glutenin mixtures by matrix-assisted laser desorption/ionization mass spectrometry., 1999, 13, 2084-2089.		13
111	The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydrate Research, 2005, 340, 1475-1482.	2.3	13
112	Structure of the Lipopolysaccharide from the <i>Bradyrhizobium</i> sp. ORS285 <i>rfaL</i> Mutant Strain. ChemistryOpen, 2017, 6, 541-553.	1.9	13
113	Mixtures of cyclic oligomers of poly(lactic acid) analyzed by negative chemical lonization and thermospray mass spectrometry. Polymer Bulletin, 1986, 15, 353.	3.3	12
114	Primary thermal fragmentation processes in poly(ethylene oxalate) investigated by mass spectrometry. Polymer Degradation and Stability, 1988, 21, 311-321.	5.8	12
115	The Outer Membrane of the Marine Gram-Negative BacteriumAlteromonas addita is Composed of a Very Short-Chain Lipopolysaccharide with a High Negative Charge Density. European Journal of Organic Chemistry, 2007, 2007, 1113-1122.	2.4	12
116	<i>Xanthomonas citri</i> pv. <i>citri</i> Pathotypes: LPS Structure and Function as Microbeâ€Associated Molecular Patterns. ChemBioChem, 2017, 18, 772-781.	2.6	12
117	Chlorovirus PBCV-1 protein A064R has three of the transferase activities necessary to synthesize its capsid protein N-linked glycans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28735-28742.	7.1	12
118	Direct mass spectrometry of polymers. XIV. Thermal fragmentation processes in poly-schiff bases. Journal of Polymer Science Part A, 1986, 24, 331-346.	2.3	11
119	Thermal decomposition processes in polyhydrazides and polyoxamides investigated by mass spectrometry. Polymer, 1987, 28, 139-146.	3.8	11
120	Sequence distribution of \hat{l}^2 -hydroxyalkanoate units in bacterial copolyesters determined by desorption chemicl ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1992, 6, 702-706.	1.5	11
121	Synthesis and characterization of poly(amidoamine)-platinum(II) complexes. Detailed speciation by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Journal of Organometallic Chemistry, 2005, 690, 1978-1985.	1.8	11
122	Longâ€standing mild hypertransaminasaemia caused by congenital disorder of glycosylation (CDG) type llx. Journal of Inherited Metabolic Disease, 2008, 31, 437-440.	3.6	11
123	The structure of the carbohydrate backbone of the lipooligosaccharide from the halophilic bacterium Arcobacter halophilus. Carbohydrate Research, 2010, 345, 850-853.	2.3	11
124	Against the rules: A marine bacterium, Loktanella rosea, possesses a unique lipopolysaccharide. Glycobiology, 2010, 20, 586-593.	2.5	11
125	<i>Prevotella denticola</i> Lipopolysaccharide from a Cystic Fibrosis Isolate Possesses a Unique Chemical Structure. European Journal of Organic Chemistry, 2016, 2016, 1732-1738.	2.4	11
126	Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. Journal of Biological Chemistry, 2020, 295, 10969-10987.	3.4	11

#	Article	IF	CITATIONS
127	Thermal degradation processes of polyamides investigated by collision activated decomposition mass spectrometry/mass spectrometry. Polymer Degradation and Stability, 1986, 16, 337-346.	5.8	10
128	Self-assembly of a nucleotide-calixarene hybrid in a triangular supramolecule. Tetrahedron Letters, 2007, 48, 7974-7977.	1.4	10
129	O-Acetyl location on Cepacian, the principal exopolysaccharide of Burkholderia cepacia complex bacteria. Carbohydrate Research, 2011, 346, 2905-2912.	2.3	10
130	Tear <i>N</i> â€glycomics in vernal and atopic keratoconjunctivitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2500-2509.	5.7	10
131	Microstructure of Bacterial Poly(\hat{l}^2 -Hydroxybutyrate-co- \hat{l}^2 -Hydroxyvalerate) by Fast Atom Bombardment Mass Spectrometry Analysis of Their Partial Degradation Products., 1990,, 49-64.		9
132	Structural Determination of the O-Chain Moieties of the Lipopolysaccharide Fraction from Agrobacterium radiobacter DSM 30147. European Journal of Organic Chemistry, 2004, 2004, 3842-3849.	2.4	9
133	Lipid A Structure and Immunoinhibitory Effect of the Marine Bacterium <i>Cobetia pacifica </i> KMM 3879 ^T . European Journal of Organic Chemistry, 2018, 2018, 2707-2716.	2.4	9
134	The structure of the carbohydrate backbone of the lipooligosaccharide from an alkaliphilic Halomonas sp Carbohydrate Research, 2010, 345, 1971-1975.	2.3	8
135	Structure of the lipopolysaccharide isolated from the novel species Uruburuella suis. Carbohydrate Research, 2012, 357, 75-82.	2.3	8
136	Structural Study of the Lipopolysaccharide Oâ€Antigen Produced by the Emerging Cystic Fibrosis Pathogen <i>Pandoraea pulmonicola</i> Luropean Journal of Organic Chemistry, 2012, 2012, 2243-2249.	2.4	8
137	Clinical and radiological correlates of activities of daily living in cerebellar atrophy caused by PMM2 mutations (PMM2-CDG). Cerebellum, 2021, 20, 596-605.	2.5	8
138	Analysis of polymers by mass spectrometry. Journal of Analytical and Applied Pyrolysis, 1987, 12, 3-10.	5.5	7
139	Structure of minor oligosaccharides from the lipopolysaccharide fraction from Pseudomonas stutzeri OX1. Carbohydrate Research, 2004, 339, 2657-2665.	2.3	7
140	Structural Elucidation of a Novel <i>B. cenocepacia</i> ETâ€12 Lipooligosaccharide Isolated from a Cystic Fibrosis Patient after Lung Transplantation. European Journal of Organic Chemistry, 2010, 2010, 1299-1306.	2.4	7
141	Advanced LC-MS Methods for N-Glycan Characterization. Comprehensive Analytical Chemistry, 2018, , 147-172.	1.3	7
142	CAMLG-CDG: a novel congenital disorder of glycosylation linked to defective membrane trafficking. Human Molecular Genetics, 2022, , .	2.9	7
143	Effect of N-methyl substitution on the thermal decomposition processes in aliphatic–aromatic polyamides. Journal of Polymer Science Part A, 1987, 25, 2351-2367.	2.3	6
144	On the mechanism of thermal degradation of polypivalolactone. Macromolecules, 1991, 24, 1416-1417.	4.8	6

#	Article	IF	CITATIONS
145	CSF N-Glycoproteomics Using MALDI MS Techniques in Neurodegenerative Diseases. Methods in Molecular Biology, 2019, 2044, 255-272.	0.9	6
146	Two Argentinean Siblings with CDG-lx: A Novel Type of Congenital Disorder of Glycosylation?. JIMD Reports, 2011, 1, 65-72.	1.5	5
147	Determination of the structure of the O-antigen and the lipid A from the entomopathogenic bacterium Pseudomonas entomophila lipopolysaccharide along with its immunological properties. Carbohydrate Research, 2015, 412, 20-27.	2.3	5
148	SLC37A4â€CDG : Second patient. JIMD Reports, 2021, 58, 122-128.	1.5	5
149	Clinical and biochemical features in a Congolese infant with congenital disorder of glycosylation (CDG)-llx. European Journal of Paediatric Neurology, 2008, 12, 257-261.	1.6	4
150	Characterization of the Salmonella Typhimurium core oligosaccharide and its reducing end 3-deoxy-d-manno-oct-2-ulosonic acid used for conjugate vaccine production. Carbohydrate Research, 2019, 481, 43-51.	2.3	4
151	Aberrant sialylation in a patient with a HNF1α variant and liver adenomatosis. IScience, 2021, 24, 102323.	4.1	4
152	N-Glycomics of Human Erythrocytes. International Journal of Molecular Sciences, 2021, 22, 8063.	4.1	4
153	<scp>COG6â€CDG</scp> : Novel variants and novel malformation. Birth Defects Research, 2022, 114, 165-174.	1.5	4
154	<i>Rhizobium rubi</i> ^T : A Gramâ€Negative Phytopathogenic Bacterium Expressing the Lewis B Epitope on the Outer Core of its Lipooligosaccharide Fraction. ChemBioChem, 2008, 9, 1830-1835.	2.6	3
155	Structure and Immunological Activity of the Lipopolysaccharide Isolated from the Species <i>Alkalimonas delamerensis</i> . European Journal of Organic Chemistry, 2013, 2013, 2653-2665.	2.4	3
156	MALDI MS of Oligo and Polysaccharides. , 1997, , 477-499.		3
157	Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses. Advances in Experimental Medicine and Biology, 2018, 1104, 237-257.	1.6	2
158	"Glycans and Glycosylation in SARS-COV2 Infection―session at the XVII Advanced School in Carbohydrate Chemistry, Italian Chemical Society. July 4th -7th 2021, Pontignano (Si), Italy. Glycoconjugate Journal, 2022, 39, 327-334.	2.7	2
159	An Unexplained Congenital Disorder of Glycosylation-II in a Child with Neurohepatic Involvement, Hypercholesterolemia and Hypoceruloplasminemia. JIMD Reports, 2017, 38, 97-100.	1.5	0
160	Aberrant Sialylation in a Patient with a <i>HNF1 \hat{l} ±</i> Variant and Liver Adenomatosis. SSRN Electronic Journal, 0, , .	0.4	0