Rafael de Souza Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744084/publications.pdf

Version: 2024-02-01

46 papers 1,215 citations

20 h-index 395702 33 g-index

46 all docs

46 does citations

46 times ranked

1410 citing authors

#	Article	IF	CITATIONS
1	Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 2004, 16, 31-38.	0.5	139
2	Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 2012, 56, 62-71.	5.8	97
3	Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Journal of Plant Physiology, 2017, 212, 69-79.	3 . 5	81
4	Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Reports, 2019, 38, 403-416.	5.6	68
5	Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H 2 O 2 production. Environmental and Experimental Botany, 2018, 145, 75-86.	4.2	66
6	Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regulation, 2016, 78, 121-131.	3.4	61
7	Salt Tolerance Induced by Exogenous Proline in Maize Is Related to Low Oxidative Damage and Favorable Ionic Homeostasis. Journal of Plant Growth Regulation, 2018, 37, 911-924.	5.1	60
8	Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoretical and Experimental Plant Physiology, 2013, 25, 251-260.	2.4	58
9	Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Reports, 2008, 27, 147-157.	5.6	57
10	Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor. Plant and Cell Physiology, 2017, 58, 522-536.	3.1	56
11	Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, 2019, 167, 103870.	4.2	46
12	Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. New Phytologist, 2018, 219, 1252-1262.	7.3	35
13	Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta, 2020, 252, 34.	3.2	28
14	Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. Plant Molecular Biology, 2019, 101, 269-296.	3.9	27
15	Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Archives of Agronomy and Soil Science, 2019, 65, 1237-1247.	2.6	27
16	H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. Plant Science, 2021, 303, 110774.	3.6	26
17	Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signaling and Behavior, 2017, 12, e1361075.	2.4	24
18	Efeito da nutrição de nitrato na tolerância de plantas de sorgo sudão à salinidade. Revista Ciencia Agronomica, 2011, 42, 675-683.	0.3	23

#	Article	IF	CITATIONS
19	Increased Na+ and Clâ^ accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings. Acta Physiologiae Plantarum, 2013, 35, 2171-2182.	2.1	21
20	Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants. Acta Physiologiae Plantarum, 2013, 35, 841-852.	2.1	21
21	Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Functional Plant Biology, 2015, 42, 865.	2.1	21
22	NH4+-stimulated low-K+ uptake is associated with the induction of H+ extrusion by the plasma membrane H+-ATPase in sorghum roots under K+ deficiency. Journal of Plant Physiology, 2011, 168, 1617-1626.	3.5	18
23	Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Scientia Horticulturae, 2019, 257, 108764.	3.6	16
24	Nitrate: ammonium nutrition alleviates detrimental effects of salinity by enhancing photosystem II efficiency in sorghum plants. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 8-12.	1.1	15
25	Sodium uptake and transport regulation, and photosynthetic efficiency maintenance as the basis of differential salt tolerance in rice cultivars. Environmental and Experimental Botany, 2021, 192, 104654.	4.2	13
26	New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Plant Physiology and Biochemistry, 2020, 154, 723-734.	5.8	11
27	Ammonium nutrition modulates K ⁺ and N uptake, transport and accumulation during salt stress acclimation of sorghum plants. Archives of Agronomy and Soil Science, 2020, 66, 1991-2004.	2.6	10
28	Deficiência nutricional em plântulas de feijão-de-corda decorrente da omissão de macro e micronutrientes. Revista Ciencia Agronomica, 2010, 41, 326-333.	0.3	9
29	H2O2 priming induces proteomic responses to defense against salt stress in maize. Plant Molecular Biology, 2021, 106, 33-48.	3.9	9
30	Nitrogen assimilation pathways and ionic homeostasis are crucial for photosynthetic apparatus efficiency in salt-tolerant sunflower genotypes. Plant Growth Regulation, 2018, 86, 375-388.	3.4	8
31	Salt tolerance is unrelated to carbohydrate metabolism in cowpea cultivars. Acta Physiologiae Plantarum, 2011, 33, 887-896.	2.1	7
32	Combined NaCl and DTT diminish harmful ER-stress effects in the sorghum seedlings CSF 20 variety. Plant Physiology and Biochemistry, 2020, 147, 223-234.	5.8	7
33	Physicochemical Properties of Edible Seed Hemicelluloses. Open Access Library Journal (oalib), 2017, 04, 1-14.	0.2	7
34	Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress. Acta Botanica Croatica, 2014, 73, 78-89.	0.7	6
35	The influence of dissolved oxygen around rice roots on salt tolerance during pre-tillering and tillering phases. Environmental and Experimental Botany, 2020, 178, 104169.	4.2	6
36	Ion accumulation in young plants of the â€~green dwarf' coconut under water and salt stress. Revista Ciencia Agronomica, 2018, 49, .	0.3	5

#	Article	IF	CITATIONS
37	Optimized acid hydrolysis of the polysaccharides from the seaweed <i>Solieria filiformis</i> (Kýtzing) P.W. Gabrielson for bioethanol production. Acta Scientiarum - Biological Sciences, 2017, 39, 423.	0.3	4
38	Nitrate and Ammonium Nutrition Modulates the Photosynthetic Performance and Antioxidant Defense in Salt-Stressed Grass Species. Journal of Soil Science and Plant Nutrition, 2021, 21, 3016-3029.	3.4	4
39	Organic solutes in coconut palm seedlings under water and salt stresses. Revista Brasileira De Engenharia Agricola E Ambiental, 2016, 20, 1002-1007.	1.1	4
40	Guidelines for Successful Quantitative Gene Expression in Real-Time qPCR Assays., 0,,.		3
41	Differential responses of dwarf cashew clones to salinity are associated to osmotic adjustment mechanisms and enzymatic antioxidative defense. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20180534.	0.8	3
42	Avaliação de DNA polimerases em ensaios de amplificação de microssatélites através do PowerPlex®1 BIO System. BBR - Biochemistry and Biotechnology Reports, 2014, 3, 1.	⁶ 0.0	3
43	Salt-Acclimation Physiological Mechanisms at the Vegetative Stage of Cowpea Genotypes in Soils from a Semiarid Region. Journal of Soil Science and Plant Nutrition, 2021, 21, 3530-3543.	3.4	3
44	Quality of haylage of <i>Brachiaria brizantha</i> with different contents of dry matter in the storage. Journal of Agricultural Science, 0, , 1-10.	1.3	1
45	Quality of haylage of <i>Brachiaria brizantha</i> with different contents of dry matter in the storage – CORRIGENDUM. Journal of Agricultural Science, 0, , 1-1.	1.3	1
46	ACCUMULATION AND PARTITION OF Fe, Zn, Cu, Mn AND Na IN MACRO AND MICRONUTRIENT-DEFICIENT COWPEA PLANTS. Journal of Advances in Agriculture, 2017, 7, 1036-1043.	0.1	0