Petr Cejka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6743786/publications.pdf

Version: 2024-02-01

80	6,467	40	75
papers	citations	h-index	g-index
93	93	93	5727 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. Science Advances, 2022, 8, eabk0221.	4.7	13
2	Mre11-Rad50 oligomerization promotes DNA double-strand break repair. Nature Communications, 2022, 13, 2374.	5.8	15
3	Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Research, 2022, 50, 8008-8022.	6.5	18
4	MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Reports, 2021, 34, 108565.	2.9	43
5	Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Reports, 2021, 34, 108906.	2.9	17
6	Single-molecule studies illuminate the function of RAD51 paralogs. Molecular Cell, 2021, 81, 898-900.	4.5	4
7	The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Research, 2021, 49, 4522-4533.	6.5	16
8	Inhibition of MRN activity by a telomere protein motif. Nature Communications, 2021, 12, 3856.	5.8	20
9	Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	18
10	Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates. Current Opinion in Genetics and Development, 2021, 71, 39-47.	1.5	10
11	Distinct RPA domains promote recruitment and the helicase-nuclease activities of Dna2. Nature Communications, 2021, 12, 6521.	5.8	9
12	DNA End Resection: Mechanism and Control. Annual Review of Genetics, 2021, 55, 285-307.	3.2	105
13	Exo1 recruits Cdc5 polo kinase to $MutL\hat{I}^3$ to ensure efficient meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30577-30588.	3.3	28
14	MRNIP is a replication fork protection factor. Science Advances, 2020, 6, eaba5974.	4.7	16
15	Regulation of the MLH1–MLH3 endonuclease in meiosis. Nature, 2020, 586, 618-622.	13.7	88
16	Phosphorylated CtIP bridges DNA to promote annealing of broken ends. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21403-21412.	3.3	21
17	The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair, 2020, 91-92, 102869.	1.3	62
18	MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nature Communications, 2020, 11, 2948.	5.8	28

#	Article	IF	Citations
19	Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Developmental Cell, 2020, 53, 706-723.e5.	3.1	26
20	CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8859-8869.	3.3	51
21	Regulated Proteolysis of MutSÎ ³ Controls Meiotic Crossing Over. Molecular Cell, 2020, 78, 168-183.e5.	4.5	33
22	The iron–sulphur cluster in human DNA2 is required for all biochemical activities of DNA2. Communications Biology, 2020, 3, 322.	2.0	13
23	DNA Bridging by the Homologous Recombination Component CtIP Investigated on the Single DNA Molecule Level. Biophysical Journal, 2020, 118, 30a.	0.2	0
24	The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Research, 2020, 48, 5485-5498.	6.5	12
25	A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans. Cell Reports, 2020, 33, 108559.	2.9	7
26	Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2. Communications Biology, 2019, 2, 174.	2.0	11
27	Competing interaction partners modulate the activity of Sgs1 helicase during <scp>DNA</scp> end resection. EMBO Journal, 2019, 38, e101516.	3. 5	21
28	Seeing is believing: DNA zipping promotes DNA repair. Journal of Biological Chemistry, 2019, 294, 3321-3322.	1.6	0
29	NBS1 promotes the endonuclease activity of the MRE11â€RAD50 complex by sensing CtIP phosphorylation. EMBO Journal, 2019, 38, .	3.5	63
30	Stepwise 5′ DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5505-5513.	3.3	49
31	A meiotic XPF–ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes and Development, 2018, 32, 283-296.	2.7	98
32	Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma, 2018, 127, 187-214.	1.0	242
33	BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nature Communications, 2018, 9, 5376.	5.8	176
34	Regulatory control of DNA end resection by Sae2 phosphorylation. Nature Communications, 2018, 9, 4016.	5.8	64
35	Methods to Study DNA End Resection II: Biochemical Reconstitution Assays. Methods in Enzymology, 2018, 600, 67-106.	0.4	16
36	Methods to Study DNA End Resection I: Recombinant Protein Purification. Methods in Enzymology, 2018, 600, 25-66.	0.4	29

#	Article	IF	Citations
37	The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Reports, 2017, 18, 496-507.	2.9	39
38	The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes and Development, 2017, 31, 493-502.	2.7	39
39	Complex assistance for DNA invasion. Nature, 2017, 550, 342-343.	13.7	4
40	Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Molecular Cell, 2017, 68, 414-430.e8.	4.5	295
41	SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination. Cell Reports, 2017, 20, 1921-1935.	2.9	147
42	Physiological protein blocks direct the Mre11â€"Rad50â€"Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes and Development, 2017, 31, 2325-2330.	2.7	106
43	Concerted action of the MutL \hat{l}^2 heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. ELife, 2017, 6, .	2.8	67
44	The MMS22L–TONSL heterodimer directly promotes RAD51â€dependent recombination upon replication stress. EMBO Journal, 2016, 35, 2584-2601.	3.5	64
45	Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Molecular Cell, 2016, 64, 405-415.	4.5	66
46	Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. Molecular Cell, 2016, 64, 940-950.	4.5	237
47	RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Reports, 2016, 16, 161-173.	2.9	81
48	Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nature Communications, 2016, 7, 13157.	5.8	31
49	Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Research, 2016, 44, 5837-5848.	6.5	31
50	H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature, 2016, 534, 714-718.	13.7	172
51	Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. ELife, 2016, 5, .	2.8	59
52	The <i>Saccharomyces cerevisiae </i> Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucleic Acids Research, 2015, 43, 7888-7897.	6.5	40
53	Top3-Rmi1 Dissolve Rad51-Mediated D Loops by a Topoisomerase-Based Mechanism. Molecular Cell, 2015, 57, 595-606.	4.5	103
54	DNA2 drives processing and restart of reversed replication forks in human cells. Journal of Cell Biology, 2015, 208, 545-562.	2.3	280

#	Article	IF	Citations
55	DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination. Journal of Biological Chemistry, 2015, 290, 22931-22938.	1.6	179
56	DNA2 Cooperates with the WRN and BLM RecQ Helicases to Mediate Long-range DNA End Resection in Human Cells. Journal of Biological Chemistry, 2014, 289, 27314-27326.	1.6	162
57	The Saccharomyces cerevisiae Mlh1-Mlh3 Heterodimer Is an Endonuclease That Preferentially Binds to Holliday Junctions. Journal of Biological Chemistry, 2014, 289, 5674-5686.	1.6	116
58	Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature, 2014, 514, 122-125.	13.7	364
59	Structural and mechanistic insight into Holliday-junction dissolution by Topoisomerase IIIα and RMI1. Nature Structural and Molecular Biology, 2014, 21, 261-268.	3.6	71
60	Ribonucleotides Misincorporated into DNA Act as Strand-Discrimination Signals in Eukaryotic Mismatch Repair. Molecular Cell, 2013, 50, 323-332.	4.5	139
61	Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature, 2013, 497, 458-462.	13.7	403
62	Relationship of DNA degradation by <i>Saccharomyces cerevisiae</i> Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1661-8.	3.3	110
63	Nuclease activity of <i>Saccharomyces cerevisiae</i> Dna2 inhibits its potent DNA helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1992-2001.	3.3	52
64	Decatenation of DNA by the S.Âcerevisiae Sgs1-Top3-Rmi1 and RPA Complex: A Mechanism for Disentangling Chromosomes. Molecular Cell, 2012, 47, 886-896.	4.5	92
65	Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1–Top3. Nature Structural and Molecular Biology, 2010, 17, 1377-1382.	3.6	175
66	DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Na 2010, 467, 112-116.	ture 13.7	421
67	The Full-length Saccharomyces cerevisiae Sgs1 Protein Is a Vigorous DNA Helicase That Preferentially Unwinds Holliday Junctions. Journal of Biological Chemistry, 2010, 285, 8290-8301.	1.6	106
68	Interplay of DNA Repair Pathways Controls Methylation Damage Toxicity in Saccharomyces cerevisiae. Genetics, 2008, 179, 1835-1844.	1.2	16
69	Homologous Recombination Rescues Mismatch-Repair-Dependent Cytotoxicity of SN1-Type Methylating Agents in S. cerevisiae. Current Biology, 2005, 15, 1395-1400.	1.8	33
70	Somatic hypermutation and mismatch repair in non-B cells. European Journal of Immunology, 2005, 35, 2222-2229.	1.6	3
71	Expression of the MutL Homologue hMLH3 in Human Cells and its Role in DNA Mismatch Repair. Cancer Research, 2005, 65, 10759-10766.	0.4	105
72	High Doses of SN1 Type Methylating Agents Activate DNA Damage Signaling Cascades that are Largely Independent of Mismatch Repair. Cell Cycle, 2005, 4, 473-477.	1.3	40

PETR CEJKA

#	Article	lF	CITATIONS
73	Dependence of the Cytotoxicity of DNA-Damaging Agents on the Mismatch Repair Status of Human Cells. Cancer Research, 2004, 64, 3391-3394.	0.4	102
74	Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes and Development, 2004, 18, 1331-1344.	2.7	206
75	Is mismatch repair really required for ionizing radiation–induced DNA damage signaling?. Nature Genetics, 2004, 36, 432-433.	9.4	18
76	Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO Journal, 2003, 22, 2245-2254.	3.5	160
77	Differential killing of mismatch repair-deficient and -proficient cells: towards the therapy of tumors with microsatellite instability. Cancer Research, 2003, 63, 8113-7.	0.4	7
78	Mismatch repair-dependent transcriptome changes in human cells treated with the methylating agent N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Research, 2003, 63, 8158-66.	0.4	18
79	Dissection of the Functions of the <i>Saccharomyces cerevisiae RAD6</i> Postreplicative Repair Group in Mutagenesis and UV Sensitivity. Genetics, 2001, 159, 953-963.	1.2	45
80	Mechanism of Replication Fork Reversal and Protection by Human RAD51 and RAD51 Paralogs. SSRN Electronic Journal, 0, , .	0.4	0