Eva Varallyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6743246/publications.pdf Version: 2024-02-01

Ενα Παραιιναν

#	Article	IF	CITATIONS
1	MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 2008, 3, 190-196.	12.0	541
2	Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. Journal of Virology, 2005, 79, 7812-7818.	3.4	373
3	Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO Journal, 2010, 29, 3507-3519.	7.8	214
4	Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant Journal, 2006, 47, 140-151.	5.7	130
5	Virus Detection by High-Throughput Sequencing of Small RNAs: Large-Scale Performance Testing of Sequence Analysis Strategies. Phytopathology, 2019, 109, 488-497.	2.2	106
6	Two Mutations in Rat Trypsin Confer Resistance against Autolysis. Biochemical and Biophysical Research Communications, 1998, 243, 56-60.	2.1	105
7	A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS ONE, 2013, 8, e55168.	2.5	96
8	NGS of Virus-Derived Small RNAs as a Diagnostic Method Used to Determine Viromes of Hungarian Vineyards. Frontiers in Microbiology, 2015, 9, 122.	3.5	95
9	Detection of microRNAs by Northern blot analyses using LNA probes. Methods, 2007, 43, 140-145.	3.8	90
10	Polycistronic artificial <scp>miRNA</scp> â€mediated resistance to <scp><i>W</i></scp> <i>heat dwarf virus</i> in barley is highly efficient at low temperature. Molecular Plant Pathology, 2016, 17, 427-437.	4.2	82
11	Plant virus infectionâ€induced persistent host gene downregulation in systemically infected leaves. Plant Journal, 2008, 55, 278-288.	5.7	71
12	Unrelated viral suppressors of <scp>RNA</scp> silencing mediate the control of <scp>ARGONAUTE1</scp> level. Molecular Plant Pathology, 2013, 14, 567-575.	4.2	60
13	Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Archives of Virology, 2012, 157, 1345-1350.	2.1	59
14	Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P1 and P1′ residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. BBA - Proteins and Proteomics, 1999, 1434, 143-150.	2.1	43
15	Viability, Longevity, and Egg Production of <i>Drosophila melanogaster</i> Are Regulated by the miR-282 microRNA. Genetics, 2013, 195, 469-480.	2.9	41
16	Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genomics, 2015, 16, 1025.	2.8	37
17	The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Medicine, 2016, 8, 63.	8.2	35
18	Independent parallel functions of p19 plant viral suppressor of RNA silencing required for effective suppressor activity. Nucleic Acids Research, 2014, 42, 599-608.	14.5	31

Eva Varallyay

#	Article	IF	CITATIONS
19	The Role of Disulfide Bond C191-C220 in Trypsin and Chymotrypsin. Biochemical and Biophysical Research Communications, 1997, 230, 592-596.	2.1	25
20	Use of siRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections. Methods in Molecular Biology, 2018, 1746, 115-130.	0.9	22
21	Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences. PLoS ONE, 2019, 14, e0216618.	2.5	22
22	Plasma activated water triggers plant defence responses. Scientific Reports, 2020, 10, 19211.	3.3	21
23	Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biologica Hungarica, 2010, 61, 457-469.	0.7	16
24	Small RNA NGS Revealed the Presence of Cherry Virus A and Little Cherry Virus 1 on Apricots in Hungary. Viruses, 2018, 10, 318.	3.3	15
25	Grapevine rootstocks can be a source of infection with non-regulated viruses. European Journal of Plant Pathology, 2020, 156, 897-912.	1.7	15
26	Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Research, 2021, 49, 12912-12928.	14.5	15
27	High-Throughput Sequencing of Small RNAs for Diagnostics of Grapevine Viruses and Viroids in Russia. Viruses, 2021, 13, 2432.	3.3	13
28	Minibeet initiation from derooted sugarbeet (Beta vulgaris L.) seedlings in vitro. Plant Science, 1994, 97, 217-224.	3.6	8
29	Detection of microRNAs in Plants by In Situ Hybridisation. Methods in Molecular Biology, 2011, 732, 9-23.	0.9	8
30	HTS-Based Monitoring of the Efficiency of Somatic Embryogenesis and Meristem Cultures Used for Virus Elimination in Grapevine. Plants, 2020, 9, 1782.	3.5	8
31	Local Aphid Species Infestation on Invasive Weeds Affects Virus Infection of Nearest Crops Under Different Management Systems – A Preliminary Study. Frontiers in Plant Science, 2020, 11, 684.	3.6	8
32	Non-targeted effects of virus-induced gene silencing vectors on host endogenous gene expression. Archives of Virology, 2016, 161, 2387-2393.	2.1	6
33	Millet Could Be both a Weed and Serve as a Virus Reservoir in Crop Fields. Plants, 2020, 9, 954.	3.5	6
34	Grapevine Pinot Gris Virus Is Present in Different Non-Vitis Hosts. Plants, 2022, 11, 1830.	3.5	6
35	Complete Sequence, Genome Organization and Molecular Detection of Grapevine Line Pattern Virus, a New Putative Anulavirus Infecting Grapevine. Viruses, 2020, 12, 602.	3.3	4
36	Variable Populations of Grapevine Virus T Are Present in Vineyards of Hungary. Viruses, 2021, 13, 1119.	3.3	4

#	Article	IF	CITATIONS
37	Viromes of Hungarian Peach Trees Identified by High-Throughput Sequencing of Small RNAs. Plants, 2022, 11, 1591.	3.5	4
38	Analysis of a novel RNA virus in a wild northern white-breasted hedgehog (Erinaceus roumanicus). Archives of Virology, 2019, 164, 3065-3071.	2.1	3
39	Small RNA profiling of aster yellows infected <i>Catharanthus roseus</i> plants. Phytopathogenic Mollicutes, 2019, 9, 131.	0.1	0