Maciej Strak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6743089/publications.pdf Version: 2024-02-01

ΜΛΟΙΕΙ STDAK

#	Article	IF	CITATIONS
1	Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project. Environmental Health Perspectives, 2012, 120, 1183-1189.	2.8	288
2	In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project. Particle and Fibre Toxicology, 2011, 8, 26.	2.8	254
3	Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment, 2014, 472, 572-581.	3.9	228
4	Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occupational and Environmental Medicine, 2010, 67, 118-124.	1.3	200
5	Spatial PM2.5, NO2, O3 and BC models for Western Europe – Evaluation of spatiotemporal stability. Environment International, 2018, 120, 81-92.	4.8	193
6	Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occupational and Environmental Medicine, 2015, 72, 49-56.	1.3	105
7	Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environment International, 2017, 108, 228-236.	4.8	97
8	Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ, The, 2021, 374, n1904.	3.0	93
9	Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants – the RAPTES project. Inhalation Toxicology, 2014, 26, 141-165.	0.8	72
10	Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring. Atmospheric Environment, 2014, 86, 113-119.	1.9	63
11	Composition of PM Affects Acute Vascular Inflammatory and Coagulative Markers - The RAPTES Project. PLoS ONE, 2013, 8, e58944.	1.1	55
12	Long-Term Exposure to Fine Particle Elemental Components and Natural and Cause-Specific Mortality—a Pooled Analysis of Eight European Cohorts within the ELAPSE Project. Environmental Health Perspectives, 2021, 129, 47009.	2.8	53
13	Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: The ELAPSE project. Environment International, 2021, 146, 106267.	4.8	50
14	Neighbourhood social and physical environment and general practitioner assessed morbidity. Health and Place, 2018, 49, 68-84.	1.5	49
15	Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest. Environmental Science & Technology, 2020, 54, 15698-15709.	4.6	43
16	Acute nasal pro-inflammatory response to air pollution depends on characteristics other than particle mass concentration or oxidative potential: the RAPTES project. Occupational and Environmental Medicine, 2013, 70, 341-348.	1.3	40
17	Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts. Environmental Research, 2017, 156, 364-373.	3.7	39
18	Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project. European Respiratory Journal, 2021, 57, 2003099.	3.1	36

MACIEJ STRAK

#	Article	IF	CITATIONS
19	Variation in characteristics of ambient particulate matter at eight locations in the Netherlands – The RAPTES project. Atmospheric Environment, 2011, 45, 4442-4453.	1.9	35
20	Longâ€ŧerm exposure to air pollution and liver cancer incidence in six European cohorts. International Journal of Cancer, 2021, 149, 1887-1897.	2.3	35
21	Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort. Environmental Research, 2021, 193, 110568.	3.7	32
22	High resolution annual average air pollution concentration maps for the Netherlands. Scientific Data, 2019, 6, 190035.	2.4	29
23	Comparison of associations between mortality and air pollution exposure estimated with a hybrid, a land-use regression and a dispersion model. Environment International, 2021, 146, 106306.	4.8	23
24	Components of ambient air pollution affect thrombin generation in healthy humans: the RAPTES project. Occupational and Environmental Medicine, 2013, 70, 332-340.	1.3	22
25	Modeled and perceived RF-EMF, noise and air pollution and symptoms in a population cohort. Is perception key in predicting symptoms?. Science of the Total Environment, 2018, 639, 75-83.	3.9	21
26	Modeling multi-level survival data in multi-center epidemiological cohort studies: Applications from the ELAPSE project. Environment International, 2021, 147, 106371.	4.8	19
27	Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project. British Journal of Cancer, 2022, 126, 1499-1507.	2.9	12
28	Long-term exposure to fine particle elemental components and mortality in Europe: Results from six European administrative cohorts within the ELAPSE project. Science of the Total Environment, 2022, 809, 152205.	3.9	11
29	Associations between the fast-food environment and diabetes prevalence in the Netherlands: a cross-sectional study. Lancet Planetary Health, The, 2022, 6, e29-e39.	5.1	11
30	Long-Term Exposure to Source-Specific Fine Particles and Mortality─A Pooled Analysis of 14 European Cohorts within the ELAPSE Project. Environmental Science & Technology, 2022, 56, 9277-9290.	4.6	11
31	Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort. Environment International, 2022, 166, 107341.	4.8	9
32	Airborne Particulate Matter and Acute Lung Inflammation: Strak et al. Respond. Environmental Health Perspectives, 2013, 121, A11-2.	2.8	5
33	Carbon dioxide ocean and ground storage as a method of climate change mitigation. International Journal of Environment and Health, 2007, 1, 291.	0.3	2
34	Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project. ISEE Conference Abstracts, 2021, 2021, .	0.0	2
35	A Global Analysis of Associations between Fine Particle Air Pollution and Cardiovascular Risk Factors: Feasibility Study on Data Linkage. Global Heart, 2020, 15, 53.	0.9	2