Lei Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6742471/publications.pdf Version: 2024-02-01

π	Article	IF	CITATIONS
1	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
2	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie, 2022, 134, .	2.0	4
3	Phase Transferâ€Mediated Degradation of Etherâ€Based Localized Highâ€Concentration Electrolytes in Alkali Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	4
4	Phase Transferâ€Mediated Degradation of Etherâ€Based Localized High oncentration Electrolytes in Alkali Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
5	Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon, 2021, 172, 200-206.	10.3	63
6	Single Potassium-Ion Conducting Polymer Electrolytes: Preparation, Ionic Conductivities, and Electrochemical Stability. ACS Applied Energy Materials, 2021, 4, 4156-4164.	5.1	14
7	Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Materials, 2020, 24, 319-328.	18.0	140
8	Pursuing graphite-based K-ion O ₂ batteries: a lesson from Li-ion batteries. Energy and Environmental Science, 2020, 13, 3656-3662.	30.8	31
9	Designing Potassium Battery Salts through a Solvent-in-Anion Concept for Concentrated Electrolytes and Mimicking Solvation Structures. Chemistry of Materials, 2020, 32, 10423-10434.	6.7	16
10	Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K–O ₂ Batteries. ACS Energy Letters, 2020, 5, 1788-1793.	17.4	32
11	Superoxide-Based K–O ₂ Batteries: Highly Reversible Oxygen Redox Solves Challenges in Air Electrodes. Journal of the American Chemical Society, 2020, 142, 11629-11640.	13.7	49
12	From Kâ€O ₂ to Kâ€Air Batteries: Realizing Superoxide Batteries on the Basis of Dry Ambient Air. Angewandte Chemie - International Edition, 2020, 59, 10498-10501.	13.8	33
13	From Kâ€O 2 to Kâ€Air Batteries: Realizing Superoxide Batteries on the Basis of Dry Ambient Air. Angewandte Chemie, 2020, 132, 10584-10587.	2.0	10
14	Localized Highâ€Concentration Electrolytes Boost Potassium Storage in High‣oading Graphite. Advanced Energy Materials, 2019, 9, 1902618.	19.5	153
15	Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902697.	19.5	81
16	Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. Advanced Energy Materials, 2019, 9, 1901427.	19.5	118
17	Correlation between Microstructure and Potassium Storage Behavior in Reduced Graphene Oxide Materials. ACS Applied Materials & amp; Interfaces, 2019, 11, 45578-45585.	8.0	34
18	Oxygen-enriched carbon nanotubes as a bifunctional catalyst promote the oxygen reduction/evolution reactions in Li-O2 batteries. Carbon, 2019, 141, 561-567.	10.3	45

Lei Qin

#	Article	IF	CITATIONS
19	Molecular Sieve Induced Solution Growth of Li ₂ O ₂ in the Li–O ₂ Battery with Largely Enhanced Discharge Capacity. ACS Applied Materials & Interfaces, 2018, 10, 7989-7995.	8.0	28
20	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	3.1	16
21	Controllable Electrochemical Fabrication of KO ₂ -Decorated Binder-Free Cathodes for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17156-17166.	8.0	4
22	Rational Assembly of Hollow Microporous Carbon Spheres as P Hosts for Longâ€Life Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702267.	19.5	85
23	Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21132-21141.	5.6	27
24	Ethers Illume Sodiumâ€Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Advanced Energy Materials, 2018, 8, 1801361.	19.5	149
25	Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries. Chinese Physics B, 2018, 27, 068201.	1.4	0
26	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 1828-1833.	5.1	78
27	Room-temperature liquid metal-based anodes for high-energy potassium-based electrochemical devices. Chemical Communications, 2018, 54, 8032-8035.	4.1	47
28	Achieving Low Overpotential Lithium–Oxygen Batteries by Exploiting a New Electrolyte Based on <i>N</i> , <i>N</i> ′-Dimethylpropyleneurea. ACS Energy Letters, 2017, 2, 313-318.	17.4	30
29	A soluble phenolic mediator contributing to enhanced discharge capacity and low charge overpotential for lithium-oxygen batteries. Electrochemistry Communications, 2017, 79, 68-72.	4.7	18
30	Porous RuO2 nanosheet/CNT electrodes for DMSO-based Li-O2 and Li ion O2 batteries. Energy Storage Materials, 2017, 8, 110-118.	18.0	36
31	Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Materials, 2017, 9, 134-139.	18.0	19
32	Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Materials, 2017, 9, 85-95.	18.0	85
33	Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb ₂ S ₃ Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1602149.	19.5	152
34	Dendrite-Free Potassium–Oxygen Battery Based on a Liquid Alloy Anode. ACS Applied Materials & Interfaces, 2017, 9, 31871-31878.	8.0	72
35	Positive role of oxygen vacancy in electrochemical performance of CoMn 2 O 4 cathodes for Li-O 2 batteries. Journal of Power Sources, 2017, 365, 134-147.	7.8	84
36	A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. Nano Energy, 2017, 40, 258-263.	16.0	35

Lei Qin

#	Article	IF	CITATIONS
37	Anomalous Enhancement of Liâ€O ₂ Battery Performance with Li ₂ O ₂ Films Assisted by NiFeO <i>_x</i> Nanofiber Catalysts: Insights into Morphology Control. Advanced Functional Materials, 2016, 26, 8290-8299.	14.9	47
38	Optimal storage rack design for a multi-deep compact AS/RS considering the acceleration/deceleration of the storage and retrieval machine. International Journal of Production Research, 2015, 53, 929-943.	7.5	32
39	From solid carbon sources to carbon nanotubes: a general water-assisted approach. RSC Advances, 2014, 4, 54244-54248.	3.6	4