John C Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6742045/publications.pdf Version: 2024-02-01

LOHN C RELL

#	Article	IF	CITATIONS
1	Oncolytic virotherapy. Nature Biotechnology, 2012, 30, 658-670.	9.4	1,150
2	Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature, 1996, 379, 91-96.	13.7	1,044
3	Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine, 2000, 6, 821-825.	15.2	742
4	VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell, 2003, 4, 263-275.	7.7	734
5	Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. Journal of Clinical Investigation, 2018, 128, 4654-4668.	3.9	591
6	Going viral with cancer immunotherapy. Nature Reviews Cancer, 2014, 14, 559-567.	12.8	500
7	Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature, 2011, 477, 99-102.	13.7	459
8	Oncolytic viruses as engineering platforms for combination immunotherapy. Nature Reviews Cancer, 2018, 18, 419-432.	12.8	288
9	Targeted Inflammation During Oncolytic Virus Therapy Severely Compromises Tumor Blood Flow. Molecular Therapy, 2007, 15, 1686-1693.	3.7	242
10	Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Science Translational Medicine, 2018, 10, .	5.8	242
11	Thunder and Lightning: Immunotherapy and Oncolytic Viruses Collide. Molecular Therapy, 2011, 19, 1008-1016.	3.7	201
12	Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans. Cancer Research, 2013, 73, 1265-1275.	0.4	193
13	The Targeted Oncolytic Poxvirus JX-594 Demonstrates Antitumoral, Antivascular, and Anti-HBV Activities in Patients With Hepatocellular Carcinoma. Molecular Therapy, 2008, 16, 1637-1642.	3.7	175
14	cGAS–STING and Cancer: Dichotomous Roles in Tumor Immunity and Development. Trends in Immunology, 2018, 39, 44-54.	2.9	174
15	Carrier Cell-based Delivery of an Oncolytic Virus Circumvents Antiviral Immunity. Molecular Therapy, 2007, 15, 123-130.	3.7	171
16	Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14981-14986.	3.3	161
17	Targeting Tumor Vasculature With an Oncolytic Virus. Molecular Therapy, 2011, 19, 886-894.	3.7	149
18	Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients. Molecular Therapy, 2015, 23, 602-608.	3.7	132

#	Article	IF	CITATIONS
19	Viruses for Tumor Therapy. Cell Host and Microbe, 2014, 15, 260-265.	5.1	131
20	A Mechanistic Proof-of-concept Clinical Trial With JX-594, a Targeted Multi-mechanistic Oncolytic Poxvirus, in Patients With Metastatic Melanoma. Molecular Therapy, 2011, 19, 1913-1922.	3.7	129
21	Identification of Genetically Modified Maraba Virus as an Oncolytic Rhabdovirus. Molecular Therapy, 2010, 18, 1440-1449.	3.7	127
22	A let-7 MicroRNA-sensitive Vesicular Stomatitis Virus Demonstrates Tumor-specific Replication. Molecular Therapy, 2008, 16, 1437-1443.	3.7	121
23	Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nature Medicine, 2015, 21, 530-536.	15.2	118
24	First-in-man Study of Western Reserve Strain Oncolytic Vaccinia Virus: Safety, Systemic Spread, and Antitumor Activity. Molecular Therapy, 2015, 23, 202-214.	3.7	117
25	Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine, 2018, 31, 17-24.	2.7	115
26	Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1576-1581.	3.3	113
27	Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Molecular Therapy, 2018, 26, 1414-1422.	3.7	111
28	Synergistic Interaction Between Oncolytic Viruses Augments Tumor Killing. Molecular Therapy, 2010, 18, 888-895.	3.7	109
29	Smac mimetics and innate immune stimuli synergize to promote tumor death. Nature Biotechnology, 2014, 32, 182-190.	9.4	104
30	Re-engineering Vesicular Stomatitis Virus to Abrogate Neurotoxicity, Circumvent Humoral Immunity, and Enhance Oncolytic Potency. Cancer Research, 2014, 74, 3567-3578.	0.4	100
31	HDAC Inhibition Suppresses Primary Immune Responses, Enhances Secondary Immune Responses, and Abrogates Autoimmunity During Tumor Immunotherapy. Molecular Therapy, 2013, 21, 887-894.	3.7	98
32	Oncolytic and Immunotherapeutic Vaccinia Induces Antibody-Mediated Complement-Dependent Cancer Cell Lysis in Humans. Science Translational Medicine, 2013, 5, 185ra63.	5.8	87
33	A High-throughput Pharmacoviral Approach Identifies Novel Oncolytic Virus Sensitizers. Molecular Therapy, 2010, 18, 1123-1129.	3.7	85
34	Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16018.	1.8	83
35	Oncolytic Viruses: Therapeutics With an Identity Crisis. EBioMedicine, 2016, 9, 31-36.	2.7	82
36	VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell, 2015, 28, 210-224.	7.7	77

#	Article	IF	CITATIONS
37	Multi-modal Potentiation of Oncolytic Virotherapy by Vanadium Compounds. Molecular Therapy, 2018, 26, 56-69.	3.7	77
38	Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer, 2015, 1, 266-277.	3.8	73
39	Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Research, 2016, 18, 83.	2.2	73
40	Harnessing Oncolytic Virus-mediated Antitumor Immunity in an Infected Cell Vaccine. Molecular Therapy, 2012, 20, 1791-1799.	3.7	70
41	Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence. PLoS ONE, 2016, 11, e0155947.	1.1	68
42	Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncolmmunology, 2018, 7, e1503032.	2.1	67
43	Complement Inhibition Prevents Oncolytic Vaccinia Virus Neutralization in Immune Humans and Cynomolgus Macaques. Molecular Therapy, 2015, 23, 1066-1076.	3.7	65
44	Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015, 6, 3013-3032.	0.8	65
45	Oncolytic vesicular stomatitis virus expressing interferon-Ï f has enhanced therapeutic activity. Molecular Therapy - Oncolytics, 2016, 3, 16001.	2.0	63
46	From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer. PLoS Pathogens, 2014, 10, e1003836.	2.1	61
47	Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease. Molecular Therapy, 2014, 22, 1320-1332.	3.7	60
48	Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncolmmunology, 2017, 6, e1285992.	2.1	60
49	NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunology Research, 2017, 5, 211-221.	1.6	57
50	Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncolmmunology, 2019, 8, e1512329.	2.1	53
51	SnapShot: Cancer Immunotherapy with Oncolytic Viruses. Cell, 2019, 176, 1240-1240.e1.	13.5	50
52	Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms. Cancer Research, 2018, 78, 922-937.	0.4	46
53	The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virotherapy, 2015, 4, 25.	6.0	45
54	Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Science Translational Medicine, 2018, 10, .	5.8	44

#	Article	IF	CITATIONS
55	Oncolytic viruses—immunotherapeutics on the rise. Journal of Molecular Medicine, 2016, 94, 979-991.	1.7	43
56	Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nature Communications, 2015, 6, 6410.	5.8	42
57	Cell carriers for oncolytic viruses: current challenges and future directions. Oncolytic Virotherapy, 2013, 2, 47.	6.0	40
58	Use of Precision-Cut Lung Slices as an ExÂVivo Tool for Evaluating Viruses and Viral Vectors for Gene and Oncolytic Therapy. Molecular Therapy - Methods and Clinical Development, 2018, 10, 245-256.	1.8	38
59	Bacterial-Mediated Knockdown of Tumor Resistance to an Oncolytic Virus Enhances Therapy. Molecular Therapy, 2014, 22, 1188-1197.	3.7	37
60	Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic. Current Opinion in Virology, 2015, 13, 49-54.	2.6	37
61	Viral Delivery of CAR Targets to Solid Tumors Enables Effective Cell Therapy. Molecular Therapy - Oncolytics, 2020, 17, 232-240.	2.0	37
62	Differential Phosphorylation of Myelin-Associated Glycoprotein Isoforms in Cell Culture. Journal of Neurochemistry, 1990, 55, 1418-1426.	2.1	36
63	Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models. Molecular Therapy - Oncolytics, 2017, 6, 80-89.	2.0	35
64	Engineering and combining oncolytic measles virus for cancer therapy. Cytokine and Growth Factor Reviews, 2020, 56, 39-48.	3.2	35
65	Propagation, Purification, and In Vivo Testing of Oncolytic Vesicular Stomatitis Virus Strains. Methods in Molecular Biology, 2012, 797, 127-140.	0.4	35
66	Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virotherapy, 2018, Volume 7, 117-128.	6.0	34
67	Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma. International Journal of Cancer, 2017, 141, 1257-1264.	2.3	32
68	Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nature Communications, 2021, 12, 2626.	5.8	32
69	Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. Journal of Clinical Investigation, 2018, 129, 518-530.	3.9	32
70	Evidence for differential viral oncolytic efficacy in an in vitro model of epithelial ovarian cancer metastasis. Molecular Therapy - Oncolytics, 2015, 2, 15013.	2.0	31
71	Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Therapy, 2015, 22, 65-75.	2.3	30
72	Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine, 2016, 34, 5082-5089.	1.7	26

#	Article	IF	CITATIONS
73	Multiple cDNAs Encoding the <i>esk</i> Kinase Predict Transmembrane and Intracellular Enzyme Isoforms. Molecular and Cellular Biology, 1992, 12, 2681-2689.	1.1	26
74	First-in-class small molecule potentiators of cancer virotherapy. Scientific Reports, 2016, 6, 26786.	1.6	25
75	Concise Review: Targeting Cancer Stem Cells and Their Supporting Niche Using Oncolytic Viruses. Stem Cells, 2019, 37, 716-723.	1.4	25
76	Characterization of Critical Determinants of ACE2–SARS CoV-2 RBD Interaction. International Journal of Molecular Sciences, 2021, 22, 2268.	1.8	24
77	Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer, 2017, 17, 594.	1.1	23
78	Aptamer-facilitated Protection of Oncolytic Virus from Neutralizing Antibodies. Molecular Therapy - Nucleic Acids, 2014, 3, e167.	2.3	22
79	Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells Oncolmmunology, 2018, 7, e1407897.	2.1	22
80	Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. Journal of Medicinal Chemistry, 2022, 65, 2836-2847.	2.9	22
81	Neoadjuvant Intravenous Oncolytic Vaccinia Virus Therapy Promotes Anticancer Immunity in Patients. Cancer Immunology Research, 2022, 10, 745-756.	1.6	22
82	Enhancing Expression of Functional Human Sodium Iodide Symporter and Somatostatin Receptor in Recombinant Oncolytic Vaccinia Virus for In Vivo Imaging of Tumors. Journal of Nuclear Medicine, 2017, 58, 221-227.	2.8	21
83	Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports, 2019, 9, 1865.	1.6	21
84	SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosensors and Bioelectronics, 2021, 180, 113122.	5.3	21
85	Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathogens, 2018, 14, e1007264.	2.1	20
86	Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization. Membranes, 2020, 10, 215.	1.4	20
87	Exploiting tumor epigenetics to improve oncolytic virotherapy. Frontiers in Genetics, 2013, 4, 184.	1.1	19
88	Oncolytic Viruses: The Best is Yet to Come. Current Cancer Drug Targets, 2018, 18, 109-123.	0.8	19
89	Deletion of Apoptosis Inhibitor F1L in Vaccinia Virus Increases Safety and Oncolysis for Cancer Therapy. Molecular Therapy - Oncolytics, 2019, 14, 246-252.	2.0	19
90	Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2ÂS for viral entry. Molecular Therapy, 2021, 29, 1984-2000.	3.7	19

John C Bell

#	Article	IF	CITATIONS
91	Insertional Mutagenesis: Neoplasia Arising from Retroviral Integration. Cancer Investigation, 1991, 9, 295-304.	0.6	18
92	Tudor Domain Containing Protein 3 Promotes Tumorigenesis and Invasive Capacity of Breast Cancer Cells. Scientific Reports, 2017, 7, 5153.	1.6	18
93	Introduction to Oncolytic Virotherapy. Methods in Molecular Biology, 2020, 2058, 1-6.	0.4	18
94	Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infectious Diseases, 2021, 7, 3034-3051.	1.8	17
95	Brief Communication; A Heterologous Oncolytic Bacteria-Virus Prime-Boost Approach for Anticancer Vaccination in Mice. Journal of Immunotherapy, 2018, 41, 125-129.	1.2	16
96	Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and TÂcell immune response against SARS-CoV-2 infection. Molecular Therapy, 2022, 30, 1885-1896.	3.7	16
97	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	5.8	16
98	Non-replicating rhabdovirus-derived particles (NRRPs) eradicate acute leukemia by direct cytolysis and induction of antitumor immunity. Blood Cancer Journal, 2013, 3, e123-e123.	2.8	15
99	Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opinion on Biological Therapy, 2020, 20, 1083-1097.	1.4	15
100	Ex Vivo Infection of Live Tissue with Oncolytic Viruses. Journal of Visualized Experiments, 2011, , .	0.2	14
101	Oncolytic vaccinia virotherapy for endometrial cancer. Gynecologic Oncology, 2014, 132, 722-729.	0.6	14
102	Regulation of Macropinocytosis by Diacylglycerol Kinase ζ. PLoS ONE, 2015, 10, e0144942.	1.1	14
103	Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers, 2020, 12, 2042.	1.7	14
104	A Viro-Immunotherapy Triple Play for the Treatment of Glioblastoma. Cancer Cell, 2017, 32, 133-134.	7.7	13
105	An Oncolytic Adenovirus Vector Expressing p14 FAST Protein Induces Widespread Syncytium Formation and Reduces Tumor Growth Rate InÂVivo. Molecular Therapy - Oncolytics, 2019, 14, 107-120.	2.0	13
106	MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Molecular Therapy - Oncolytics, 2021, 21, 340-355.	2.0	13
107	Advances in oncolytic virotherapy. Communications Medicine, 2022, 2, .	1.9	12
108	Editorial overview: Oncolytic viruses — replicating virus therapeutics for the treatment of cancer. Current Opinion in Virology, 2015, 13, viii-ix.	2.6	11

#	Article	IF	CITATIONS
109	Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies. Molecular Therapy - Oncolytics, 2016, 3, 16027.	2.0	11
110	Programmable insect cell carriers for systemic delivery of integrated cancer biotherapy. Journal of Controlled Release, 2015, 220, 210-221.	4.8	10
111	Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR Journal, 2016, 57, 73-85.	1.8	10
112	Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus. Molecular Therapy - Methods and Clinical Development, 2017, 7, 112-122.	1.8	10
113	Phase I study of oncolytic virus (OV) MG1 maraba/MAGE-A3 (MG1MA3), with and without transgenic MAGE-A3 adenovirus vaccine (AdMA3) in incurable advanced/metastatic MAGE-A3-expressing solid tumours: CCTG IND.214 Journal of Clinical Oncology, 2017, 35, e14637-e14637.	0.8	10
114	Magnetic targeting of oncolytic VSV-based therapies improves infection of tumor cells in the presence of virus-specific neutralizing antibodies inÂvitro. Biochemical and Biophysical Research Communications, 2020, 526, 641-646.	1.0	9
115	Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS Nanoscience Au, 2021, 1, 15-37.	2.0	9
116	Expression of the fusogenic p14 FAST protein from a replication-defective adenovirus vector does not provide a therapeutic benefit in an immunocompetent mouse model of cancer. Cancer Gene Therapy, 2016, 23, 355-364.	2.2	8
117	Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. , 2018, 6, 62.		8
118	Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers. Oncogene, 2020, 39, 4592-4602.	2.6	8
119	The importance of imaging strategies for pre-clinical and clinical in vivo distribution of oncolytic viruses. Oncolytic Virotherapy, 2017, Volume 7, 25-35.	6.0	7
120	Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer. PLoS ONE, 2016, 11, e0151516.	1.1	7
121	Sequencing of serially passaged measles virus affirms its genomic stability and reveals a nonrandom distribution of consensus mutations. Journal of General Virology, 2020, 101, 399-409.	1.3	6
122	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	3.7	5
123	Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Molecular Therapy, 2022, 30, 3270-3283.	3.7	4
124	Oncolytic Viruses: A New Weapon to Fight Cancer. Journal of Medical Imaging and Radiation Sciences, 2008, 39, 115-127.	0.2	2
125	Interfering With Tumor Pathways That Augment Viral Oncolysis. Molecular Therapy, 2011, 19, 2108-2109.	3.7	2
126	The Virus That Came In from the Cold. Science Translational Medicine, 2012, 4, 138fs17.	5.8	2

John C Bell

#	Article	IF	CITATIONS
127	Taming Measles Virus to Create an Effective Cancer Therapeutic. Mayo Clinic Proceedings, 2014, 89, 863-865.	1.4	2
128	N-Myc expression enhances the oncolytic effects of vesicular stomatitis virus in human neuroblastoma cells. Molecular Therapy - Oncolytics, 2016, 3, 16005.	2.0	2
129	Personalized oncology and BRAFK601N melanoma: model development, drug discovery, and clinical correlation. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1365-1378.	1.2	2
130	Check and Checkmate: Battling Cancer with Multiplex Immunotherapy. Molecular Therapy, 2020, 28, 1236-1237.	3.7	1
131	Robust envelope exchange platform for oncolytic measles virus. Journal of Virological Methods, 2022, 302, 114487.	1.0	1
132	ONCOLYTIC RHABDOVIRUSES., 2015, , 231-261.		0
133	Oncolytic viruses: cytolytic agents, replicating immunotherapeutics or both?. Future Virology, 2018, 13, 445-448.	0.9	Ο
134	The Canadian Cancer Research Conference 2019. Current Oncology, 2020, 27, 226-230.	0.9	0
135	Cell Adhesion Molecules and Signal Transduction Trends in Glycoscience and Glycotechnology, 1995, 7, 205-221.	0.0	Ο
136	From Muridae to Homo: Patient-researcher engagement in the research translation continuum Journal of Clinical Oncology, 2018, 36, e23000-e23000.	0.8	0
137	Oncolytic viruses for antigen delivery. , 2022, , 1-19.		0