Thomas Doneux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6741814/publications.pdf

Version: 2024-02-01

		377584	340414
68	1,732 citations	21	39
papers	citations	h-index	g-index
69	69	69	3017
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Visualisation of electrochemical processes by coupled electrochemistry and fluorescence microscopy. Current Opinion in Electrochemistry, 2022, 34, 101013.	2.5	6
2	Impact of speciation on the tellurium electrochemistry in choline chloride-based deep eutectic solvents. Electrochemistry Communications, 2022, 140, 107327.	2.3	8
3	Palladium Electrodeposition from Deep Eutectic Solvents. ECS Meeting Abstracts, 2020, MA2020-01, 1179-1179.	0.0	1
4	Chronopotentiometry as a Sensitive Interfacial Characterisation Tool for Peptide Aptamer Monolayers. Electroanalysis, 2019, 31, 2041-2047.	1.5	3
5	Evaluating Mechanical Properties of Polymers at the Nanoscale Level via Atomic Force Microscopy–Infrared Spectroscopy. ACS Applied Polymer Materials, 2019, 1, 3-7.	2.0	7
6	Wireless Addressing of Freestanding MoSe ₂ Macro- and Microparticles by Bipolar Electrochemistry. Journal of Physical Chemistry C, 2019, 123, 5647-5652.	1.5	12
7	Electrochemical Monitoring of the Reversible Folding of Surface-Immobilized DNA i-Motifs. Langmuir, 2018, 34, 3112-3118.	1.6	8
8	Effects of halide anions on adsorption and 2D condensation of 5-fluorocytosine at hanging mercury drop electrode. Journal of Electroanalytical Chemistry, 2018, 821, 121-125.	1.9	3
9	Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces. ACS Sensors, 2018, 3, 5-12.	4.0	70
10	Grafting of Oligo(ethylene glycol)-Functionalized Calix[4]arene-Tetradiazonium Salts for Antifouling Germanium and Gold Surfaces. Langmuir, 2018, 34, 6021-6027.	1.6	18
11	Electric field induced proton transfer at $\hat{l}\pm, \hat{l}\%$ -mercaptoalkanecarboxylic acids self-assembled monolayers of different chain length. Journal of Electroanalytical Chemistry, 2018, 815, 238-245.	1.9	5
12	Electroreduction of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid: Oriented product selectivity through the electrode material. Electrochimica Acta, 2018, 270, 434-439.	2.6	10
13	Electrochemical synthesis of copper(I) dicyanamide thin films. Journal of Electroanalytical Chemistry, 2018, 819, 331-337.	1.9	7
14	Application of FRET Microscopy to the Study of the Local Environment and Dynamics of DNA SAMs on Au Electrodes. Langmuir, 2018, 34, 14802-14810.	1.6	7
15	A snapshot of the electrochemical reaction layer by using 3 dimensionally resolved fluorescence mapping. Chemical Science, 2018, 9, 6622-6628.	3.7	14
16	Inside the Reaction Layer: Investigation of Electrochemical Reactions By Coupling Electrochemistry and Confocal Fluorescence Microscopy. ECS Meeting Abstracts, 2018, , .	0.0	0
17	Adsorption of 2,2 \hat{a} e-bipyridine at an Au(111) ionic liquid electrified interface. Electrochemistry Communications, 2017, 78, 56-59.	2.3	5
18	Underpotential deposition of silver on gold from deep eutectic electrolytes. Electrochimica Acta, 2017, 237, 127-132.	2.6	19

#	Article	IF	CITATIONS
19	NMR Study of the Reductive Decomposition of [BMIm][NTf ₂] at Gold Electrodes and Indirect Electrochemical Conversion of CO ₂ . ChemPhysChem, 2017, 18, 2208-2216.	1.0	21
20	Measuring and Remediating Nonspecific Modifications of Gold Surfaces Using a Coupled in Situ Electrochemical Fluorescence Microscopic Methodology. Analytical Chemistry, 2017, 89, 886-894.	3.2	20
21	Coupling electrochemistry with in situ fluorescence (confocal) microscopy. Current Opinion in Electrochemistry, 2017, 6, 31-37.	2.5	37
22	Controlled Tuning of the Ferri/Ferrocyanide Electron Transfer at Oligo(Ethylene Glycol)-Modified Electrodes. Electrochimica Acta, 2016, 219, 412-417.	2.6	7
23	Direct oxidative pathway from amplex red to resorufin revealed by in situ confocal imaging. Physical Chemistry Chemical Physics, 2016, 18, 25817-25822.	1.3	26
24	Growth and characterization of WSe2 single crystals using TeCl4 as transport agent. Journal of Crystal Growth, 2016, 453, 111-118.	0.7	10
25	Coupling Electrochemistry with Fluorescence Confocal Microscopy To Investigate Electrochemical Reactivity: A Case Study with the Resazurin-Resorufin Fluorogenic Couple. Analytical Chemistry, 2016, 88, 6292-6300.	3.2	47
26	Rapid and Selective Detection of Proteins by Dual Trapping Using Gold Nanoparticles Functionalized with Peptide Aptamers. ACS Sensors, 2016, 1, 929-933.	4.0	50
27	Electron Transfer Across an Antifouling Mercapto-hepta(ethylene glycol) Self-Assembled Monolayer. Journal of Physical Chemistry C, 2016, 120, 15915-15922.	1.5	21
28	Nanoscale study of MoSe2/poly(3-hexylthiophene) bulk heterojunctions for hybrid photovoltaic applications. Solar Energy Materials and Solar Cells, 2016, 145, 116-125.	3.0	11
29	Inâ€Situ Fluorescence Microscopy Study of the Interfacial Inhomogeneity of DNA Mixed Selfâ€Assembled Monolayers at Gold Electrodes. ChemElectroChem, 2015, 2, 434-442.	1.7	18
30	Electrochemical and circular dichroism spectroscopic evidence of two types of interaction between [Ru(NH3)6]3+ and an elongated thrombin binding aptamer G-quadruplex. Electrochimica Acta, 2015, 179, 84-92.	2.6	5
31	Contrasted electrochemical behaviour of Cu(l) and Cu(ll) ions in 1-butyl-3-methylimidazolium dicyanamide. Electrochimica Acta, 2015, 162, 156-162.	2.6	16
32	Comparison of solid metal–metal oxide reference electrodes for potentiometric oxygen sensors in liquid lead–bismuth eutectic operating at low temperature ranges. Sensors and Actuators B: Chemical, 2015, 214, 20-28.	4.0	39
33	Electrochemical square scheme analysis of macromolecule–electroactive ligand interactions, and its application to DNA binding. Journal of Electroanalytical Chemistry, 2015, 745, 44-55.	1.9	11
34	Liquid Metal/Metal Oxide Reference Electrodes for Potentiometric Oxygen Sensor Operating in Liquid Lead Bismuth Eutectic in a Wide Temperature Range. Procedia Engineering, 2014, 87, 264-267.	1.2	8
35	Single-layer MoSe2 based NH3 gas sensor. Applied Physics Letters, 2014, 105, .	1.5	326
36	A study of the electron transfer inhibition on a charged self-assembled monolayer modified gold electrode by odd random phase multisine electrochemical impedance spectroscopy. Electrochimica Acta, 2014, 140, 266-274.	2.6	19

3

#	Article	IF	CITATIONS
37	Optimization of the Probe Coverage in DNA Biosensors by a Oneâ€Step Coadsorption Procedure. ChemElectroChem, 2014, 1, 147-157.	1.7	25
38	Imaging Redox Activity at Bipolar Electrodes by Indirect Fluorescence Modulation. Analytical Chemistry, 2014, 86, 3708-3711.	3.2	55
39	Electrochemical Discrimination between G-Quadruplex and Duplex DNA. Analytical Chemistry, 2014, 86, 8057-8065.	3.2	17
40	On the interaction between [Ru(NH3)6]3+ and the G-quadruplex forming thrombin binding aptamer sequence. Journal of Inorganic Biochemistry, 2013, 126, 84-90.	1.5	12
41	Electrochemical sensing of 2D condensation in amyloid peptides. Electrochimica Acta, 2013, 106, 43-48.	2.6	16
42	Growth and characterization of large, high quality MoSe2 single crystals. Journal of Crystal Growth, 2013, 363, 122-127.	0.7	50
43	Selenium electrochemistry in choline chloride–urea deep eutectic electrolyte. Journal of Solid State Electrochemistry, 2013, 17, 527-536.	1.2	34
44	Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and xanthohumol. Electrochimica Acta, 2013, 90, 440-444.	2.6	26
45	Electrochemical investigations of dissolved and surface immobilised 2-amino-1,4-naphthoquinones in aqueous solutions. Journal of Electroanalytical Chemistry, 2012, 664, 80-87.	1.9	9
46	Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys. Electrocatalysis, 2012, 3, 139-146.	1.5	165
47	Two-dimensional condensation of 5-fluorocytosine at the mercury electrode. Electrochimica Acta, 2012, 73, 141-144.	2.6	3
48	Large Conductance Changes in Peptide Single Molecule Junctions Controlled by pH. Journal of Physical Chemistry C, 2011, 115, 8361-8368.	1.5	60
49	On the mechanism of hydrogen evolution catalysis by proteins: A case study with bovine serum albumin. Electrochimica Acta, 2011, 56, 9337-9343.	2.6	30
50	Polylysine atalyzed Hydrogen Evolution at Mercury Electrodes. Electroanalysis, 2010, 22, 2064-2070.	1.5	29
51	Adsorption of adipic acid conjugates at the Au(1 1 1) electrode aqueous solution interface. Journal of Electroanalytical Chemistry, 2010, 649, 95-101.	1.9	4
52	Influence of the crystallographic orientation on the reductive desorption of self-assembled monolayers on gold electrodes. Journal of Electroanalytical Chemistry, 2010, 649, 164-170.	1.9	37
53	Voltammetry Involving Amalgam Formation and Anodic Stripping in Weakly Supported Media: Theory and Experiment. Journal of Physical Chemistry C, 2010, 114, 7120-7127.	1.5	12
54	Influence of the Interfacial Peptide Organization on the Catalysis of Hydrogen Evolution. Langmuir, 2010, 26, 1347-1353.	1.6	33

#	Article	IF	CITATIONS
55	Electrochemical formation and investigation of a self-assembled [60]fullerene monolayer. Physical Chemistry Chemical Physics, 2010, 12, 15029.	1.3	3
56	Two-dimensional condensation of nucleobases: A comparative study of halogen derivatives of cytosine. Collection of Czechoslovak Chemical Communications, 2009, 74, 1611-1622.	1.0	4
57	Interaction of Cytidine 5′â€Monophosphate with Au(111): An In Situ Infrared Spectroscopic Study. ChemPhysChem, 2009, 10, 1649-1655.	1.0	13
58	Adsorption and two-dimensional condensation of 5-methylcytosine. Bioelectrochemistry, 2009, 75, 89-94.	2.4	14
59	A Simple Model to Describe the Effect of Electrostatic Interactions on the Composition of Mixed Self-Assembled Monolayers. Langmuir, 2009, 25, 2199-2203.	1.6	8
60	Molecular Dynamics and Electrochemical Investigations of a pH-Responsive Peptide Monolayer. Journal of Physical Chemistry C, 2009, 113, 6792-6799.	1.5	13
61	First- and second-order phase transitions in the adlayer of biadipate on $Au(111)$. Physical Chemistry Chemical Physics, 2009, 11, 688-693.	1.3	3
62	Adsorption of 2-thiobarbituric acid at the electrochemical interface: Contrasted behaviours on mercury and gold. Collection of Czechoslovak Chemical Communications, 2009, 74, 1583-1597.	1.0	1
63	Dissolution kinetics of octadecanethiolate monolayers electro-adsorbed on Au(111). Journal of Electroanalytical Chemistry, 2008, 621, 267-276.	1.9	22
64	On the adsorption of hexaammineruthenium (III) at anionic self-assembled monolayers. Electrochimica Acta, 2008, 53, 6202-6208.	2.6	20
65	Mixed self-assembled monolayers of 2-mercaptobenzimidazole and 2-mercaptobenzimidazole-5-sulfonate: Determination and control of the surface composition. Journal of Electroanalytical Chemistry, 2007, 599, 241-248.	1.9	20
66	Experimental and Density Functional Theory Study of the Vibrational Properties of 2-Mercaptobenzimidazole in Interaction with Gold. Journal of Physical Chemistry A, 2006, 110, 11346-11352.	1.1	36
67	Adsorption of 2-mercaptobenzimidazole on a Au(111) electrode. Electrochimica Acta, 2005, 50, 4275-4282.	2.6	21
68	Electrochemical and FTIR characterization of the self-assembled monolayer of 2-mercaptobenzimidazole on Au(111). Journal of Electroanalytical Chemistry, 2004, 564, 65-75.	1.9	42