List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6741690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into the formation and emplacement of impact melt rocks within the Chicxulub impact structure, following the 2016 IODP-ICDP Expedition 364. Bulletin of the Geological Society of America, 2022, 134, 293-315.	3.3	10
2	Formation of the crater suevite sequence from the Chicxulub peak ring: A petrographic, geochemical, and sedimentological characterization. Bulletin of the Geological Society of America, 2022, 134, 895-927.	3.3	15
3	Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak ring, Mexico. Geochimica Et Cosmochimica Acta, 2022, 323, 74-101.	3.9	7
4	Hydrogen emission from meteors and meteorites: mapping traces of H2O molecules and organic compounds in small Solar system bodies. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3982-3992.	4.4	6
5	Unique evidence of fluid alteration in the Kakowa (L6) ordinary chondrite. Scientific Reports, 2022, 12, 5520.	3.3	1
6	Scientific Comment on KlokoÄnÃk et al. "Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other dataâ€, Tectonophysics 780 (2020), 228396. Tectonophysics, 2021, 800, 228578.	2.2	0
7	The Mesoproterozoic Stac Fada Member, NW Scotland: an impact origin confirmed but refined. Journal of the Geological Society, 2021, 178, .	2.1	1
8	Globally distributed iridium layer preserved within the Chicxulub impact structure. Science Advances, 2021, 7, .	10.3	47
9	Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico. International Journal of Earth Sciences, 2021, 110, 2619-2636.	1.8	5
10	High frame rate emission spectroscopy for ablation tests in plasma wind tunnel. Review of Scientific Instruments, 2021, 92, 033101.	1.3	4
11	Definition and use of functional analogues in planetary exploration. Planetary and Space Science, 2021, 197, 105162.	1.7	10
12	Shocked quartz in distal ejecta from the Ries impact event (Germany) found at ~ 180Âkm distance, near Bernhardzell, eastern Switzerland. Scientific Reports, 2021, 11, 7438.	3.3	3
13	Microtextures in the Chelyabinsk impact breccia reveal the history of Phosphorusâ€Olivineâ€Assemblages in chondrites. Meteoritics and Planetary Science, 2021, 56, 742-766.	1.6	5
14	Lunar meteorite Northwest Africa 11962: A regolith breccia containing records of titaniumâ€rich lunar volcanism and the high alkali suite. Meteoritics and Planetary Science, 2021, 56, 971-991.	1.6	3
15	Resolving the age of the Puchezh-Katunki impact structure (Russia) against alteration and inherited 40Ar* – No link with extinctions. Geochimica Et Cosmochimica Acta, 2021, 301, 116-140.	3.9	3
16	Shock metamorphism in samples from the Shili impact structure (Kazakhstan) and discussion of its size and age. , 2021, , .		0
17	Chicxulub impact structure, IODPâ€ICDP Expedition 364 drill core: Geochemistry of the granite basement. Meteoritics and Planetary Science, 2021, 56, 1243-1273.	1.6	5
18	Origin of micrometer-sized impact diamonds in ureilites by catalytic growth involving Fe-Ni-silicide: The example of Kenna meteorite. Geochimica Et Cosmochimica Acta, 2021, 309, 286-298.	3.9	7

#	Article	IF	CITATIONS
19	Shock impedance amplified impact deformation of zircon in granitic rocks from the Chicxulub impact crater. Earth and Planetary Science Letters, 2021, 575, 117201.	4.4	15
20	Shockâ€metamorphic microstructures in quartz grains from Albian sandstones from the Tin Bider impact structure, Algeria. Meteoritics and Planetary Science, 2021, 56, 2273-2280.	1.6	0
21	Characterization of shocked quartz grains from Chicxulub peak ring granites and shock pressure estimates. Meteoritics and Planetary Science, 2020, 55, 2206-2223.	1.6	12
22	Preferred orientation distribution of shockâ€induced planar microstructures in quartz and feldspar. Meteoritics and Planetary Science, 2020, 55, 1082-1092.	1.6	8
23	Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. American Mineralogist, 2020, 105, 1704-1711.	1.9	33
24	Shocked titanite records Chicxulub hydrothermal alteration and impact age. Geochimica Et Cosmochimica Acta, 2020, 281, 12-30.	3.9	20
25	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
26	Shock metamorphism in plagioclase and selective amorphization. Meteoritics and Planetary Science, 2020, 55, 1103-1115.	1.6	6
27	Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 349-357.	1.5	2
28	Geochemistry, geochronology and petrogenesis of Maya Block granitoids and dykes from the Chicxulub Impact Crater, Gulf of MA©xico: Implications for the assembly of Pangea. Gondwana Research, 2020, 82, 128-150.	6.0	26
29	The history of the Tissint meteorite, from its crystallization on Mars to its exposure in space: New geochemical, isotopic, and cosmogenic nuclide data. Meteoritics and Planetary Science, 2020, 55, 294-311.	1.6	9
30	An Early Jurassic age for the Puchezhâ€Katunki impact structure (Russia) based on ⁴⁰ Ar/ ³⁹ Ar data and palynology. Meteoritics and Planetary Science, 2019, 54, 1764-1780.	1.6	8
31	Best practices for the use of meteorite names in publications. Meteoritics and Planetary Science, 2019, 54, 1397-1400.	1.6	2
32	New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	22
33	Petrography and perovskite U-Pb age of the Katuba kimberlite, Kundelungu Plateau (D.R. Congo): Implications for regional tectonism and mineralisation. Journal of African Earth Sciences, 2019, 156, 35-43.	2.0	1
34	Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region. Meteoritics and Planetary Science, 2019, 54, 2398-2408.	1.6	10
35	Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Scientific Reports, 2019, 9, 18028.	3.3	21
36	Shocked quartz in polymict impact breccia from the Upper Cretaceous Yallalie impact structure in Western Australia. Meteoritics and Planetary Science, 2019, 54, 621-637.	1.6	10

#	Article	IF	CITATIONS
37	Formation of CV chondrules by recycling of amoeboid olivine aggregate-like precursors. Geochimica Et Cosmochimica Acta, 2019, 247, 121-141.	3.9	64
38	Estimating average shock pressures recorded by impactite samples based on universalÂstage investigations of planar deformation features in quartz—Sources of error and recommendations. Meteoritics and Planetary Science, 2018, 53, 110-130.	1.6	19
39	FRIGN zircon—The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation. Geology, 2018, 46, 891-894.	4.4	55
40	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
41	Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 2018, 495, 1-11.	4.4	65
42	High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Scientific Reports, 2018, 8, 9851.	3.3	39
43	The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites. Geochimica Et Cosmochimica Acta, 2017, 210, 1-24.	3.9	15
44	The variability of ruthenium in chromite from chassignite and olivineâ€phyric shergottite meteorites: New insights into the behavior of <scp>PGE</scp> and sulfur in Martian magmatic systems. Meteoritics and Planetary Science, 2017, 52, 333-350.	1.6	7
45	On the occurrence and origin of anthropogenic radionuclides found in a fragment of the Chelyabinsk (<scp>LL</scp> 5) meteorite. Meteoritics and Planetary Science, 2017, 52, 1244-1250.	1.6	0
46	Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden). Meteoritics and Planetary Science, 2017, 52, 2521-2549.	1.6	13
47	The fourth Arab Impact Cratering and Astrogeology Conference (<scp>AICAC IV</scp>), April 9–12, 2017, Algiers (Algeria). Meteoritics and Planetary Science, 2017, 52, 2067-2071.	1.6	2
48	Search (and Discovery) of New Impact Craters on Earth. Elements, 2017, 13, 358-359.	0.5	1
49	Geophysical and magnetoâ€structural study of the Maâdna structure (Talemzane, Algeria): Insights on its age and origin. Meteoritics and Planetary Science, 2016, 51, 2249-2273.	1.6	8
50	Shatter cones: (Mis)understood?. Science Advances, 2016, 2, e1600616.	10.3	32
51	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	12.6	181
52	WIP: A Webâ€based program for indexing planar features in quartz grains and its usage. Meteoritics and Planetary Science, 2016, 51, 647-662.	1.6	8
53	Impact origin for the Hummeln structure (Sweden) and its link to the Ordovician disruption of the L chondrite parent body. Geology, 2015, 43, 279-282.	4.4	17
54	Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid?. Meteoritics and Planetary Science, 2015, 50, 273-286.	1.6	20

#	Article	IF	CITATIONS
55	Comment on: "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska eventâ€ , by P. Vannucchi et al. [Earth Planet. Sci. Lett. 409 (2015) 168–174]. Earth and Planetary Science Letters, 2015, 419, 222-223.	4.4	5
56	Revisiting the Rochechouart impact structure, France. Meteoritics and Planetary Science, 2014, 49, 2152-2168.	1.6	9
57	No Martian soil component in shergottite meteorites. Geochimica Et Cosmochimica Acta, 2014, 125, 23-33.	3.9	24
58	Impact controversies: Impact recognition criteria and related issues. Meteoritics and Planetary Science, 2014, 49, 723-731.	1.6	44
59	Enigmatic tubular features in impact glass: REPLY. Geology, 2014, 42, e348-e348.	4.4	1
60	Advanced EDS and µXRF Analysis of Earth and Planetary Materials using Spectrum Imaging, Computer-Controlled SEM and an Annular SDD. Microscopy and Microanalysis, 2014, 20, 1716-1717.	0.4	2
61	Opaque minerals, magnetic properties, and paleomagnetism of the Tissint Martian meteorite. Meteoritics and Planetary Science, 2013, 48, 1919-1936.	1.6	29
62	ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains. Meteoritics and Planetary Science, 2011, 46, 1418-1424.	1.6	20
63	The newly confirmed Luizi impact structure, Democratic Republic of Congo—Insights into central uplift formation and post-impact erosion. Geology, 2011, 39, 851-854.	4.4	19
64	Geochemistry of basement rocks and impact breccias from the central uplift of the Bosumtwi crater, GhanaComparison of proximal and distal impactites. , 2010, , .		6
65	Ballen quartz and cristobalite in impactites: New investigations. , 2010, , .		17
66	Single crystal U–Pb zircon age and Sr–Nd isotopic composition of impactites from the Bosumtwi impact structure, Ghana: Comparison with country rocks and Ivory Coast tektites. Chemical Geology, 2010, 275, 254-261.	3.3	8
67	The Keurusselkämpact structure, Finland—Impact origin confirmed by characterization of planar deformation features in quartz grains. Meteoritics and Planetary Science, 2010, 45, 434-446.	1.6	19
68	Characterisation of ballen quartz and cristobalite in impact breccias: new observations and constraints on ballen formation. European Journal of Mineralogy, 2009, 21, 203-217.	1.3	61
69	Systematic study of universalâ€stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results. Meteoritics and Planetary Science, 2009, 44, 925-940.	1.6	94
70	Petrographic and shock metamorphic studies of the impact breccia section (1397–1551 m depth) of the Eyreville drill core, Chesapeake Bay impact structure, USA. , 2009, , .		7
71	Geochemistry of the impact breccia section (1397–1551 m depth) of the Eyreville drill core, Chesapeake Bay impact structure, USA. , 2009, , .		4
72	Shock Metamorphism of Bosumtwi Impact Crater Rocks, Shock Attenuation, and Uplift Formation. Science, 2008, 322, 1678-1681.	12.6	49

#	Article	IF	CITATIONS
73	Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana. Meteoritics and Planetary Science, 2007, 42, 513-540.	1.6	17
74	Drill core LBâ€08A, Bosumtwi impact structure, Ghana: Petrographic and shock metamorphic studies of material from the central uplift. Meteoritics and Planetary Science, 2007, 42, 611-633.	1.6	20
75	Drill core LBâ€08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift. Meteoritics and Planetary Science, 2007, 42, 689-708.	1.6	7
76	Expedition 364 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
77	Site M0077: introduction. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
78	Site M0077: Upper Peak Ring. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
79	Nova Colinas, Maranhão State: A newly confirmed, complex impact structure in Brazil. Meteoritics and Planetary Science. 0, , .	1.6	1