Elias Kaiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6741367/publications.pdf Version: 2024-02-01

FLING KNIGED

#	Article	IF	CITATIONS
1	Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 2015, 66, 2415-2426.	4.8	173
2	Fluctuating Light Takes Crop Photosynthesis on a Rollercoaster Ride. Plant Physiology, 2018, 176, 977-989.	4.8	164
3	Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. Frontiers in Plant Science, 2018, 9, 2002.	3.6	100
4	Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Scientific Reports, 2016, 6, 31252.	3.3	76
5	Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO ₂ partial pressure, temperature, air humidity and blue irradiance. Annals of Botany, 2017, 119, 191-205.	2.9	73
6	Photosynthetic Acclimation to Fluctuating Irradiance in Plants. Frontiers in Plant Science, 2020, 11, 268.	3.6	66
7	Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochemical Journal, 2019, 476, 2725-2741.	3.7	63
8	Dynamic modelling of limitations on improving leaf CO ₂ assimilation under fluctuating irradiance. Plant, Cell and Environment, 2018, 41, 589-604.	5.7	53
9	Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 2019, 168, 103889.	4.2	51
10	Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum). Environmental and Experimental Botany, 2018, 149, 109-119.	4.2	49
11	Partial replacement of red and blue by green light increases biomass and yield in tomato. Scientia Horticulturae, 2019, 249, 271-279.	3.6	46
12	Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state. Journal of Experimental Botany, 2017, 68, 5629-5640.	4.8	38
13	Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass. Plant, Cell and Environment, 2020, 43, 2192-2206.	5.7	35
14	H ⁺ Transport by K ⁺ EXCHANGE ANTIPORTER3 Promotes Photosynthesis and Growth in Chloroplast ATP Synthase Mutants. Plant Physiology, 2020, 182, 2126-2142.	4.8	32
15	Red/blue light ratio strongly affects steadyâ€state photosynthesis, but hardly affects photosynthetic induction in tomato (<scp><i>Solanum lycopersicum</i></scp>). Physiologia Plantarum, 2019, 167, 144-158.	5.2	31
16	UVA radiation promotes tomato growth through morphological adaptation leading to increased light interception. Environmental and Experimental Botany, 2020, 176, 104073.	4.2	31
17	Red/blue light ratios induce morphology and physiology alterations differently in cucumber and tomato. Scientia Horticulturae, 2021, 281, 109995.	3.6	31
18	Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia Plantarum, 2018, 162, 506-517.	5.2	27

ELIAS KAISER

#	Article	IF	CITATIONS
19	ls nitric oxide a critical key factor in ABA-induced stomatal closure?. Journal of Experimental Botany, 2020, 71, 399-410.	4.8	21
20	High Stomatal Conductance in the Tomato Flacca Mutant Allows for Faster Photosynthetic Induction. Frontiers in Plant Science, 2020, 11, 1317.	3.6	20
21	Photorespiration Enhances Acidification of the Thylakoid Lumen, Reduces the Plastoquinone Pool, and Contributes to the Oxidation of P700 at a Lower Partial Pressure of CO2 in Wheat Leaves. Plants, 2020, 9, 319.	3.5	19
22	Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity. Frontiers in Plant Science, 2016, 7, 56.	3.6	17
23	NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato. Journal of Experimental Botany, 2022, 73, 3637-3650.	4.8	16
24	Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions. Plants, 2020, 9, 316.	3.5	14
25	Integrating chlorophyll fluorescence parameters into a crop model improves growth prediction under severe drought. Agricultural and Forest Meteorology, 2021, 303, 108367.	4.8	13
26	LED and HPS Supplementary Light Differentially Affect Gas Exchange in Tomato Leaves. Plants, 2021, 10, 810.	3.5	9
27	Variation of Photosynthetic Induction in Major Horticultural Crops Is Mostly Driven by Differences in Stomatal Traits. Frontiers in Plant Science, 2022, 13, 860229.	3.6	4
28	Acclimating Cucumber Plants to Blue Supplemental Light Promotes Growth in Full Sunlight. Frontiers in Plant Science, 2021, 12, 782465.	3.6	3
29	Integrating the stages of photosynthesis. , 2022, , 195-242.		3