Mi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6740891/publications.pdf

Version: 2024-02-01

257101 243296 2,147 70 24 44 citations h-index g-index papers 71 71 71 2049 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials, 2021, 33, e2006042.	11.1	267
2	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	06 5 1.1	183
3	Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS Applied Materials & Interfaces, 2020, 12, 13698-13708.	4.0	129
4	Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. Journal of Materials Chemistry A, 2020, 8, 3168-3179.	5.2	88
5	Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydrate Polymers, 2016, 154, 129-138.	5.1	76
6	Transition Metal and Metal–N <i>_x</i> Codoped MOFâ€Derived Fentonâ€Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. Small, 2020, 16, e2005060.	5.2	72
7	Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosensors and Bioelectronics, 2021, 176, 112906.	5.3	66
8	Fabrication and Characterization of Flame-Retardant Nanoencapsulated <i>n</i> -Octadecane with Melamine–Formaldehyde Shell for Thermal Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 15541-15549.	3.2	62
9	Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. Journal of Colloid and Interface Science, 2019, 537, 197-205.	5.0	61
10	A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation. Cellulose, 2021, 28, 1715-1729.	2.4	60
11	Flexible Waterborne Polyurethane/Cellulose Nanocrystal Composite Aerogels by Integrating Graphene and Carbon Nanotubes for a Highly Sensitive Pressure Sensor. ACS Sustainable Chemistry and Engineering, 2021, 9, 14029-14039.	3.2	60
12	Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. Nano-Micro Letters, 2019, 11, 87.	14.4	59
13	Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydrate Polymers, 2019, 210, 429-436.	5.1	57
14	Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Advances, 2013, 3, 26418.	1.7	44
15	Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polymer Composites, 2019, 40, E365.	2.3	44
16	Recyclable, Self-Healing, and Flame-Retardant Solid–Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 42991-43001.	4.0	44
17	Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency. Cellulose, 2020, 27, 4679-4690.	2.4	40
18	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918.	4.6	37

#	Article	IF	CITATIONS
19	Facile hydrothermal synthesis of rod-like Nb2O5/Nb2CTx composites for visible-light driven photocatalytic degradation of organic pollutants. Environmental Research, 2021, 193, 110587.	3.7	35
20	Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chemistry, 2021, 343, 128425.	4.2	33
21	Homology and Immune Checkpoint Dual-Targeted Sonocatalytic Nanoagents for Enhancing Sonodynamic Tumor Therapy. ACS Applied Materials & Sonodynamic Tumor Therapy.	4.0	30
22	Assembling and Regulating of Transition Metalâ€Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. Small, 2022, 18, e2105763.	5.2	28
23	Effect of molecular weight on the properties of poly(butylene succinate). Chinese Journal of Polymer Science (English Edition), 2014, 32, 953-960.	2.0	27
24	Effect of hyperbranched poly(trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester. Carbohydrate Polymers, 2018, 195, 107-113.	5.1	27
25	Waste Cotton Fabric/Zinc Borate Composite Aerogel with Excellent Flame Retardancy. ACS Sustainable Chemistry and Engineering, 2020, 8, 10335-10344.	3.2	25
26	Robust, highly elastic and bioactive heparin-mimetic hydrogels. Polymer Chemistry, 2015, 6, 7893-7901.	1,9	24
27	Effect of sodium citrate/polyethylene glycol on plasticization and retrogradation of maize starch. International Journal of Biological Macromolecules, 2020, 154, 1471-1477.	3.6	24
28	Ratiometric-enhanced G-Quadruplex Probes for Amplified and Mix-to-Read Detection of Mercury Pollution in Aquatic Products. Journal of Agricultural and Food Chemistry, 2020, 68, 12124-12131.	2.4	24
29	High-Valence Transition Metal Modified FeNiV Oxides Anchored on Carbon Fiber Cloth for Efficient Oxygen Evolution Catalysis. Advanced Fiber Materials, 2022, 4, 774-785.	7.9	24
30	Allâ€eellulose films with excellent strength and toughness via a facile approach of dissolution–regeneration. Journal of Applied Polymer Science, 2019, 136, 46925.	1.3	21
31	Engineering Multivalence Aptamer Probes for Amplified and Label-Free Detection of Antibiotics in Aquatic Products. Journal of Agricultural and Food Chemistry, 2020, 68, 2554-2561.	2.4	21
32	Ï€â€Conjugated Copper Phthalocyanine Nanoparticles as Highly Sensitive Sensor for Colorimetric Detection of Biomarkers. Chemistry - A European Journal, 2022, 28, .	1.7	21
33	Acidity-triggered zwitterionic prodrug nano-carriers with AIE properties and amplification of oxidative stress for mitochondria-targeted cancer theranostics. Polymer Chemistry, 2019, 10, 983-990.	1.9	19
34	Dual Triple Helix-Aptamer Probes for Mix-and-Read Detecting Antibiotics in Fish and Milk. Journal of Agricultural and Food Chemistry, 2020, 68, 9524-9529.	2.4	19
35	Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding. Journal of Materials Science: Materials in Electronics, 2020, 31, 8910-8922.	1.1	18
36	Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite. Carbohydrate Polymers, 2019, 221, 113-119.	5.1	17

#	Article	IF	CITATIONS
37	Fabrication of a Bioâ€Based Superhydrophobic and Flameâ€Retardant Cotton Fabric for Oil–Water Separation. Macromolecular Materials and Engineering, 2021, 306, 2000624.	1.7	17
38	Simultaneous improvements of thermal stability and mechanical properties of poly(propylene) Tj ETQq0 0 0 rgBT / Science (English Edition), 2014, 32, 1724-1736.	Overlock 2.0	10 Tf 50 70 16
39	Synthesis and Electronic Modulation of Nanostructured Layered Double Hydroxides for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2021, 14, 5112-5134.	3.6	16
40	Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors. Journal of Materials Science: Materials in Electronics, 2020, 31, 14145-14156.	1.1	15
41	Transition sandwich Janus membrane of cellulose acetate and polyurethane nanofibers for oil–water separation. Cellulose, 2022, 29, 1841-1853.	2.4	15
42	Microfibrillated cellulose modified with urea and its reinforcement for starch-based bionanocomposites. Cellulose, 2019, 26, 5981-5993.	2.4	14
43	Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit. Journal of Materials Science: Materials in Electronics, 2020, 31, 17233-17248.	1.1	14
44	Waste paper-based carbon aerogel supported ZIF-67 derived hollow NiCo phosphate nanocages for electrocatalytic oxygen evolution reaction. Electrochimica Acta, 2021, 393, 139076.	2.6	14
45	Highâ€Efficient Preparation of Carboxymethyl Starch via Ball Milling With Limited Solvent Content. Starch/Staerke, 2018, 70, 1700250.	1.1	12
46	Comparison of Mechanical Reinforcement Effects of Cellulose Nanofibers and Montmorillonite in Starch Composite. Starch/Staerke, 2019, 71, 1800114.	1.1	11
47	Highâ€Performance Starch Films Reinforced With Microcrystalline Cellulose Made From Eucalyptus Pulp via Ball Milling and Mercerization. Starch/Staerke, 2019, 71, 1800218.	1.1	11
48	Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 825-831.	0.4	11
49	Highâ€performance starch/clay bionanocomposite for textile warp sizing. Polymer Composites, 2018, 39, E441.	2.3	10
50	Preparation of cellulose nanocrystals and their application in reinforcing viscose filaments. Cellulose, 2020, 27, 10553-10565.	2.4	9
51	Improvement of filtration performance of polyvinyl chloride/cellulose acetate blend membrane via acid hydrolysis. Journal of Applied Polymer Science, 2021, 138, 50312.	1.3	9
52	Preparation and characterization of starch-based nanocomposites reinforced by graphene oxide self-assembled on the surface of silane coupling agent modified cellulose nanocrystals. International Journal of Biological Macromolecules, 2022, 198, 187-193.	3.6	9
53	A comparative investigation of gelatinized and regenerated starch composites reinforced by microfibrillated cellulose. Food Chemistry, 2022, 373, 131470.	4.2	7
54	Super-tough poly (I-lactide) materials: Reactive blending with maleic anhydride grafted starch and poly (ethylene glycol) diacrylate. International Journal of Biological Macromolecules, 2019, 136, 1069-1075.	3.6	6

#	Article	IF	CITATIONS
55	Effect of hyperbranched poly(citric polyethylene glycol) with different polyethylene glycol chain length on starch sizing and compatibility with blended yarns. Journal of Applied Polymer Science, 2020, 137, 48928.	1.3	5
56	Preparation of Microfibrillated Cellulose from Wood Pulp through Carbamate Modification and Colloid Milling. Applied Sciences (Switzerland), 2020, 10, 1977.	1.3	5
57	FeNi LDH/Loofah Sponge-Derived Magnetic FeNi Alloy Nanosheet Array/Porous Carbon Hybrids with Efficient Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2022, 61, 10078-10090.	1.8	5
58	Effect of hyperbranched poly(citric polyethylene glycol) with various polyethylene glycol chain lengths on starch plasticization and retrogradation. Polymer International, 2020, 69, 274-279.	1.6	4
59	Synergistic effects of sodium adipate/triethylene glycol on the plasticization and retrogradation of corn starch. Carbohydrate Research, 2020, 496, 108112.	1.1	4
60	Solution-processable core/shell structured nanocellulose/poly(o-Methoxyaniline) nanocomposites for electrochromic applications. Cellulose, 2020, 27, 9467-9478.	2.4	4
61	Compressible and sensitive aerogels derived from graphene/waste paper for wearable pressure sensor. Journal of Materials Science: Materials in Electronics, 2022, 33, 4388-4399.	1.1	4
62	Graphene Oxide Nanosheets and Ni Nanoparticles Coated on Glass Fabrics Modified with Bovine Serum Albumin for Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 8491-8501.	2.4	4
63	Fabrication and characterization of electrically conductive copper coated poly(<i>p</i> pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i>pcly(<i< td=""><td>1.5</td><td>3</td></i<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1.5	3
64	Property enhancement of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 392 Td (succinate)/poly(ethylene) via highâ€speed extrusion and <scp><i>i>in situ</i>>/scp> fibrillation. Journal of Applied Polymer Science,</scp>	glycolâ€∢ 1.3	scp> <i>co</i> 2
	2019, 136, 47549.		
65	Effect of hyperbranched poly(trimellitic glyceride) paired with different metal ions on the physicochemical properties of starch. Food Chemistry, 2020, 311, 125899.	4.2	2
66	Characterization and Properties of Longâ€Chain Fatty Acid Starch Esters Prepared with Regenerated Starch by Dry Method. Starch/Staerke, 2019, 71, 1900143.	1.1	1
67	Robust Starch/Regenerated Cellulose Allâ€Polysaccharides Bilayer Films with Excellent Mechanical Properties. Starch/Staerke, 2020, 72, 1900153.	1.1	1
68	Comparative Case Study on Adhesion of Three Common Sizing Agents to Cotton and Polyester Yarns. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 157-165.	0.4	1
69	Research on calculation method of the scope of groundwater environmental impact assessment for mountain tunnels., 2011,,.		0
70	Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 465-471.	0.4	0