## **Gernot Friedrichs**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/674001/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer. Frontiers in Marine Science, 2017, 4, .                                                                                 | 2.5  | 137       |
| 2  | Quantitative detection of HCO behind shock waves: The thermal decomposition of HCO. Physical Chemistry Chemical Physics, 2002, 4, 5778-5788.                                                                      | 2.8  | 107       |
| 3  | The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays. Limnology and Oceanography: Methods, 2004, 2, 282-288.               | 2.0  | 94        |
| 4  | Bismuth Tri―and Tetraarylcarboxylates: Crystal Structures, In Situ Xâ€ray Diffraction, Intermediates and<br>Luminescence. Chemistry - A European Journal, 2013, 19, 12537-12546.                                  | 3.3  | 70        |
| 5  | Validation of a thermal decomposition mechanism of formaldehyde by detection of CH2 O and HCO behind shock waves. International Journal of Chemical Kinetics, 2004, 36, 157-169.                                  | 1.6  | 52        |
| 6  | Direct measurements of the reaction H + CH2O ? H2 + HCO behind shock waves by means of Vis-UV detection of formaldehyde. International Journal of Chemical Kinetics, 2002, 34, 374-386.                           | 1.6  | 45        |
| 7  | Room Temperature and Shock Tube Study of the Reaction HCO + O2 Using the Photolysis of Glyoxal as an Efficient HCO Source. Journal of Physical Chemistry A, 2006, 110, 160-170.                                   | 2.5  | 43        |
| 8  | Toward continuous monitoring of seawater13CO2/12CO2isotope ratio andpCO2: Performance of cavity ringdown spectroscopy and gas matrix effects. Limnology and Oceanography: Methods, 2010, 8, 539-551.              | 2.0  | 42        |
| 9  | Dimerization of HNO in Aqueous Solution: An Interplay of Solvation Effects, Fast Acid–Base Equilibria,<br>and Intramolecular Hydrogen Bonding?. Journal of the American Chemical Society, 2011, 133, 17912-17922. | 13.7 | 41        |
| 10 | Design and field application of a UV-LED based optical fiber biofilm sensor. Biosensors and Bioelectronics, 2012, 33, 172-178.                                                                                    | 10.1 | 41        |
| 11 | Kinetics of the Reaction C2H5 + HO2 by Time-Resolved Mass Spectrometry. Journal of Physical Chemistry A, 2006, 110, 3330-3337.                                                                                    | 2.5  | 37        |
| 12 | Using cavity ringdown spectroscopy for continuous monitoring of δ13C(CO2) and ƒCO2in the surface ocean. Limnology and Oceanography: Methods, 2012, 10, 752-766.                                                   | 2.0  | 32        |
| 13 | Investigation of the Thermal Decay of Carbon Suboxide. Zeitschrift Fur Physikalische Chemie, 1998, 203,<br>1-14.                                                                                                  | 2.8  | 31        |
| 14 | Kinetics of the a-C <sub>3</sub> H <sub>5</sub> + O <sub>2</sub> reaction, investigated by photoionization using synchrotron radiation. Physical Chemistry Chemical Physics, 2018, 20, 10721-10731.               | 2.8  | 28        |
| 15 | Fluorescence-Based Quasicontinuous and <i>In Situ</i> Monitoring of Biofilm Formation Dynamics in Natural Marine Environments. Applied and Environmental Microbiology, 2014, 80, 3721-3728.                       | 3.1  | 26        |
| 16 | Thermal Decomposition of NCN3as a High-Temperature NCN Radical Source: Singletâ^'Triplet Relaxation<br>and Absorption Cross Section of NCN(3I£)â€. Journal of Physical Chemistry A, 2010, 114, 12963-12971.       | 2.5  | 25        |
| 17 | A kinetic study of the reaction of NH2 with NO in the temperature range 1400–2800 K. Physical<br>Chemistry Chemical Physics, 1999, 1, 427.                                                                        | 2.8  | 24        |
| 18 | Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra. Journal of Geophysical Research, 2011, 116, .                                                          | 3.3  | 24        |

**GERNOT FRIEDRICHS** 

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2and OCHCHO + HO2. Journal of Physical Chemistry A, 2015, 119, 7305-7315.                                                                                         | 2.5 | 24        |
| 20 | The first water-based synthesis of Ce(iv)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Transactions, 2019, 48, 8433-8441.                                                                                 | 3.3 | 24        |
| 21 | The Thermal Decomposition of NH <sub>2</sub> and NH Radicals. Zeitschrift Fur Elektrotechnik Und<br>Elektrochemie, 1998, 102, 1474-1485.                                                                                             | 0.9 | 23        |
| 22 | A shock tube study of the reaction NH2 + CH4 ? NH3 + CH3 and comparison with transition state theory. International Journal of Chemical Kinetics, 2003, 35, 304-309.                                                                 | 1.6 | 23        |
| 23 | Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part 1: Frequency<br>Modulation Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1-30.                                                   | 2.8 | 22        |
| 24 | Direct measurements of the high temperature rate constants of the reactions NCN + O, NCN + NCN, and NCN + M. Physical Chemistry Chemical Physics, 2012, 14, 1030-1037.                                                               | 2.8 | 22        |
| 25 | Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment. Frontiers<br>in Marine Science, 2018, 5, .                                                                                                   | 2.5 | 22        |
| 26 | HCO formation in the thermal unimolecular decomposition of glyoxal: rotational and weak collision effects. Physical Chemistry Chemical Physics, 2008, 10, 6520.                                                                      | 2.8 | 20        |
| 27 | The Products of the Reactions of <i>o</i> -Benzyne with Ethene, Propene, and Acetylene: A Combined<br>Mass Spectrometric and Quantum Chemical Study. Zeitschrift Fur Physikalische Chemie, 2009, 223,<br>387-407.                    | 2.8 | 19        |
| 28 | Wide temperature range (T = 295 K and 770–1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy. Physical Chemistry Chemical Physics, 2007, 9, 4177.                         | 2.8 | 18        |
| 29 | Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part 2: Cavity<br>Ringdown Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2008, 222, 31-61.                                                       | 2.8 | 18        |
| 30 | Vibrational sum-frequency generation as a probe for composition, chemical reactivity, and film<br>formation dynamics of the sea surface nanolayer. Limnology and Oceanography: Methods, 2010, 8,<br>216-228.                         | 2.0 | 18        |
| 31 | Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.<br>Physical Chemistry Chemical Physics, 2016, 18, 22978-22989.                                                                          | 2.8 | 18        |
| 32 | Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN. Physical Chemistry Chemical Physics, 2014, 16, 11647-11657.            | 2.8 | 17        |
| 33 | Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. Journal of Materials Chemistry C, 2018, 6, 12668-12678.                                                | 5.5 | 17        |
| 34 | Investigation of the Thermal Decomposition of Ketene and of the Reaction CH2 + H2 ⇔ CH3 + H.<br>Zeitschrift Fur Physikalische Chemie, 2001, 215, .                                                                                   | 2.8 | 15        |
| 35 | Validation of the Extended Simultaneous Kinetics and Ringdown Model by Measurements of the Reaction NH2+ NO. Journal of Physical Chemistry A, 2005, 109, 4785-4795.                                                                  | 2.5 | 15        |
| 36 | Quantitative Time-Resolved Vibrational Sum Frequency Generation Spectroscopy as a Tool for Thin<br>Film Kinetic Studies: New Insights into Oleic Acid Monolayer Oxidation. Journal of Physical Chemistry<br>A, 2013, 117, 7863-7875. | 2.5 | 15        |

**GERNOT FRIEDRICHS** 

| #  | Article                                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series<br>Station (SW Baltic Sea). Biogeosciences, 2013, 10, 5325-5334.                                                                                                                                                              | 3.3  | 15        |
| 38 | Direct Measurements of the Rate Constants of the Reactions NCN + NO and NCN + NO <sub>2</sub><br>Behind Shock Waves. Journal of Physical Chemistry A, 2011, 115, 14382-14390.                                                                                                                                                       | 2.5  | 14        |
| 39 | The story of NCN as a key species in prompt-NO formation. Progress in Energy and Combustion Science, 2021, 87, 100940.                                                                                                                                                                                                              | 31.2 | 14        |
| 40 | An extended simultaneous kinetics and ringdown model: Determination of the rate constant for the reaction SiH2 + O2. Physical Chemistry Chemical Physics, 2003, 5, 4622-4630.                                                                                                                                                       | 2.8  | 13        |
| 41 | The rate constant of the reaction NCN + H <sub>2</sub> and its role in NCN and NO modeling in low pressure CH <sub>4</sub> /O <sub>2</sub> /N <sub>2</sub> -flames. Physical Chemistry Chemical Physics, 2015, 17, 15876-15886.                                                                                                     | 2.8  | 12        |
| 42 | Direct Measurements of the Reaction NH2 + H2 → NH3 + H at Temperatures from 1360 to 2130 K.<br>Zeitschrift Fur Physikalische Chemie, 2000, 214, .                                                                                                                                                                                   | 2.8  | 11        |
| 43 | Quantitative FM Spectroscopy at High Temperatures: The Detection of 1CH2 behind Shock Waves.<br>Zeitschrift Fur Physikalische Chemie, 2000, 214, .                                                                                                                                                                                  | 2.8  | 11        |
| 44 | Quantitative Mid-Infrared Cavity Ringdown Detection of Methyl Iodide for Monitoring Applications.<br>Analytical Chemistry, 2017, 89, 8445-8452.                                                                                                                                                                                     | 6.5  | 11        |
| 45 | Single-tone mid-infrared frequency modulation spectroscopy for sensitive detection of transient species. Optics Express, 2019, 27, 26499.                                                                                                                                                                                           | 3.4  | 11        |
| 46 | Câ^'H Bond Activation of Coordinated Pyridine: Ortho-Pyridyl-Ditechnetiumhydridocarbonyl Metal<br>Cyclus. Crystal Structure and Dynamic Behavior in Solution. Inorganic Chemistry, 2008, 47, 10177-10182.                                                                                                                           | 4.0  | 10        |
| 47 | Time-Resolved Cavity Ringdown Measurements and Kinetic Modeling of the Pressure Dependences of the Recombination Reactions of SiH <sub>2</sub> with the Alkenes C <sub>2</sub> H <sub>4</sub> , C <sub>3</sub> H <sub>6</sub> , and <i>t</i> C <sub>4</sub> H <sub>8</sub> . Journal of Physical Chemistry A, 2008, 112, 5636-5646. | 2.5  | 9         |
| 48 | Shock Tube Measurements of the Rate Constant of the Reaction NCN + O <sub>2</sub> . International Journal of Chemical Kinetics, 2015, 47, 586-595.                                                                                                                                                                                  | 1.6  | 9         |
| 49 | Kinetics of 1- and 2-methylallyl + O <sub>2</sub> reaction, investigated by photoionisation using synchrotron radiation. Physical Chemistry Chemical Physics, 2021, 23, 1539-1549.                                                                                                                                                  | 2.8  | 9         |
| 50 | A consistent model for the thermal decomposition of NCN <sub>3</sub> and the singlet– triplet relaxation of NCN. International Journal of Chemical Kinetics, 2013, 45, 30-40.                                                                                                                                                       | 1.6  | 8         |
| 51 | The Reaction NCN + H2: Quantum Chemical Calculations, Role of1NCN Chemistry, and3NCN Absorption<br>Cross Section. Journal of Physical Chemistry A, 2020, 124, 4632-4645.                                                                                                                                                            | 2.5  | 7         |
| 52 | Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves.<br>Fuels, 2021, 2, 437-447.                                                                                                                                                                                                       | 2.7  | 7         |
| 53 | Doppler-limited high-resolution spectrum and VPT2 assisted assignment of the C-H stretch of CH2Br2.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 180-191.                                                                                                                                   | 3.9  | 6         |
| 54 | Quantitative HNO detection behind shock waves. Proceedings of the Combustion Institute, 2017, 36, 607-615.                                                                                                                                                                                                                          | 3.9  | 5         |

**GERNOT FRIEDRICHS** 

| #  | Article                                                                                                                                                                                                                                           | IF             | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 55 | Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics, 2018, 20, 10561-10568.                                                                                                                | 2.8            | 5         |
| 56 | Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1427-1452. | 2.8            | 5         |
| 57 | The Gas Phase Oxidation of Silyl Radicals by Molecular Oxygen: Kinetics and Mechanisms. , 0, , 44-57.                                                                                                                                             |                | 4         |
| 58 | A precise high-resolution near infrared continuous wave cavity ringdown spectrometer using a<br>Fourier transform based wavelength calibration. Review of Scientific Instruments, 2010, 81, 053109.                                               | 1.3            | 4         |
| 59 | Nonequilibrium Excitation of C2 Radicals during the Thermal Decomposition of C3 O2 behind Shock<br>Waves. Zeitschrift Fur Physikalische Chemie, 2001, 215, .                                                                                      | 2.8            | 2         |
| 60 | Chemie über den Wolken …ïֻ und darunter. Herausgegeben von Reinhard Zellner. Angewandte<br>2011, 123, 10196-10197.                                                                                                                                | Chemie,<br>2.0 | 1         |
| 61 | Ab Initio and RRKM/Master Equation Analysis of the Photolysis and Thermal Unimolecular<br>Decomposition of Bromoacetaldehyde. Journal of Physical Chemistry A, 2021, 125, 8282-8293.                                                              | 2.5            | 1         |
| 62 | The Gas-Phase Oxidation of Silyl Radicals by Molecular Oxygen: Kinetics and Mechanisms. ChemInform, 2004, 35, no.                                                                                                                                 | 0.0            | 0         |
| 63 | Marine Applications for a Promising New Spectroscopic Method. Eos, 2015, 96, .                                                                                                                                                                    | 0.1            | 0         |
| 64 | Congratulations to Friedrich Temps: a multifaceted career in Physical Chemistry. Zeitschrift Fur<br>Physikalische Chemie, 2020, 234, 1223-1232.                                                                                                   | 2.8            | 0         |
| 65 | Towards a Transferable Standard for Nitrous Oxide Isotopomer Ratio. , 2020, , .                                                                                                                                                                   |                | 0         |