Stefano Stella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739676/publications.pdf

Version: 2024-02-01

840776 1125743 14 830 11 13 citations h-index g-index papers 17 17 17 1023 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017, 546, 559-563.	27.8	170
2	Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity. Cell, 2018, 175, 1856-1871.e21.	28.9	167
3	High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Reports, 2019, 26, 3741-3751.e5.	6.4	102
4	Structure of Csx1-cOA4 complex reveals the basis of RNA decay in Type III-B CRISPR-Cas. Nature Communications, 2019, 10, 4302.	12.8	72
5	Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nature Structural and Molecular Biology, 2017, 24, 882-892.	8.2	55
6	The genome editing revolution: A <scp>CRISPR as TALE</scp> offâ€target story. BioEssays, 2016, 38, S4-S13.	2.5	51
7	A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Research, 2018, 46, 10319-10330.	14.5	51
8	DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. ELife, 2020, 9, .	6.0	47
9	Structures of the Cmr \hat{l}^2 Complex Reveal the Regulation of the Immunity Mechanism of Type III-B CRISPR-Cas. Molecular Cell, 2020, 79, 741-757.e7.	9.7	43
10	Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nature Structural and Molecular Biology, 2015, 22, 65-72.	8.2	30
11	Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nature Communications, 2021, 12, 4476.	12.8	23
12	Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Nucleic Acids Research, 2021, 49, 12577-12590.	14.5	10
13	Assembly of i>Francisella novicida i>Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 409-415.	0.8	6
14	The genome editing revolution: A CRISPR-Cas TALE off-target story. Inside the Cell, 2016, 1, 7-16.	0.4	0