## Véronique Pallet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739608/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behavioural Brain Research, 2003, 145, 37-49.                                                           | 2.2 | 169       |
| 2  | Retinoic Acid Restores Adult Hippocampal Neurogenesis and Reverses Spatial Memory Deficit in Vitamin<br>A Deprived Rats. PLoS ONE, 2008, 3, e3487.                                                                                 | 2.5 | 104       |
| 3  | Retinoid Hyposignaling Contributes to Aging-Related Decline in Hippocampal Function in<br>Short-Term/Working Memory Organization and Long-Term Declarative Memory Encoding in Mice.<br>Journal of Neuroscience, 2008, 28, 279-291. | 3.6 | 84        |
| 4  | Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. Journal of Nutritional Science, 2018, 7, e19.                                                           | 1.9 | 57        |
| 5  | Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 133, 1-7.                                                  | 2.2 | 36        |
| 6  | Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Frontiers in Aging Neuroscience, 2014, 6, 6.                                  | 3.4 | 35        |
| 7  | Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis?. Frontiers in Behavioral Neuroscience, 2014, 8, 20.                                       | 2.0 | 33        |
| 8  | Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice.<br>Frontiers in Behavioral Neuroscience, 2016, 10, 9.                                                                           | 2.0 | 30        |
| 9  | Vitamin A Deficiency in Rats Induces Anatomic and Metabolic Changes Comparable with Those of Neurodegenerative Disorders. Journal of Nutrition, 2009, 139, 696-702.                                                                | 2.9 | 22        |
| 10 | Erythrocyte DHA level as a biomarker of DHA status in specific brain regions of <i>n</i> -3 long-chain<br>PUFA-supplemented aged rats. British Journal of Nutrition, 2014, 112, 1805-1818.                                         | 2.3 | 20        |
| 11 | Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats.<br>Neurobiology of Aging, 2020, 85, 1-10.                                                                                           | 3.1 | 15        |
| 12 | EPA/DHA and Vitamin A Supplementation Improves Spatial Memory and Alleviates the Age-related<br>Decrease in Hippocampal RXRÎ <sup>3</sup> and Kinase Expression in Rats. Frontiers in Aging Neuroscience, 2016, 8,<br>103.         | 3.4 | 14        |
| 13 | Neuronal morphology and synaptic plasticity in the hippocampus of vitamin A deficient rats.<br>Nutritional Neuroscience, 2022, 25, 779-790.                                                                                        | 3.1 | 5         |
| 14 | Vitamin A deficiency impairs contextual fear memory in rats: Abnormalities in the glucocorticoid pathway. Journal of Neuroendocrinology, 2019, 31, e12802.                                                                         | 2.6 | 4         |