Bruce Gendre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
3	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
4	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
5	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
6	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
7	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
8	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
9	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
10	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
11	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
12	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
13	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013, 766, 30.	4.5	148
14	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
15	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
16	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
17	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	114
18	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673	4.4	108

#	Article	IF	CITATIONS
19	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
20	VAST: An ASKAP Survey for Variables and Slow Transients. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	88
21	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. Astrophysical Journal, 2006, 638, L71-L74.	4.5	82
22	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66.	4.5	67
23	An XMM-Newton observation of the globular cluster Omega Centauri. Astronomy and Astrophysics, 2003, 400, 521-531.	5.1	67
24	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
25	Discovery of a quiescent neutron star binary in the globular cluster M 13. Astronomy and Astrophysics, 2003, 403, L11-L14.	5.1	65
26	EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001-2008. Astronomical Journal, 2009, 137, 4100-4108.	4.7	63
27	GRANDMA observations of advanced LIGO's and advanced Virgo's third observational campaign. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5518-5539.	4.4	63
28	FRIPON: a worldwide network to track incoming meteoroids. Astronomy and Astrophysics, 2020, 644, A53.	5.1	58
29	A HOT COCOON IN THE ULTRALONG GRB 130925A: HINTS OF A POPIII-LIKE PROGENITOR IN A LOW-DENSITY WIND ENVIRONMENT. Astrophysical Journal Letters, 2014, 790, L15.	8.3	57
30	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	2.6	56
31	The BeppoSAX catalog of GRBÂX-ray afterglow observations. Astronomy and Astrophysics, 2006, 455, 813-824.	5.1	54
32	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	4.4	53
33	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	50
34	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
35	The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2141-2149.	4.4	46
36	The complex light curve of the afterglow of GRB071010A . Monthly Notices of the Royal Astronomical Society, 2008, 388, 347-356.	4.4	44

#	Article	IF	CITATIONS
37	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
38	Continuous optical monitoring during the prompt emission of GRB 060111B. Astronomy and Astrophysics, 2006, 451, L39-L42.	5.1	43
39	STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 697, 328-344.	4.5	38
40	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
41	A Flare-type IV Burst Event from Proxima Centauri and Implications for Space Weather. Astrophysical Journal, 2020, 905, 23.	4.5	37
42	Simultaneous event detection rates by electromagnetic and gravitational wave detectors in the advanced era of LIGO and Virgo. Monthly Notices of the Royal Astronomical Society, 2014, 437, 649-655.	4.4	36
43	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015, 800, 16.	4.5	35
44	The gamma-ray burst 050904: evidence for a termination shock?. Astronomy and Astrophysics, 2007, 462, 565-573.	5.1	34
45	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	7.8	32
46	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
47	The Optical Luminosity–Time Correlation for More than 100 Gamma-Ray Burst Afterglows. Astrophysical Journal Letters, 2020, 905, L26.	8.3	32
48	LOFT: the Large Observatory For X-ray Timing. Proceedings of SPIE, 2012, , .	0.8	29
49	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
50	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
51	REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION. Astrophysical Journal, 2015, 799, 69.	4.5	29
52	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
53	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012, 748, 59.	4.5	28
54	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28

#	Article	IF	CITATIONS
55	X-ray continuum properties of GRBÂafterglows observed by XMM-Newton and Chandra. Astronomy and Astrophysics, 2006, 455, 803-812.	5.1	27
56	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
57	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	27
58	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. Astronomy and Astrophysics, 2008, 483, 847-855.	5.1	27
59	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1111-1122.	4.4	26
60	Decay properties of the X-ray afterglows of gamma-ray bursts. Astronomy and Astrophysics, 2005, 430, 465-470.	5.1	24
61	Fall back accretion and energy injections in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3642-3650.	4.4	21
62	Constraining the rate and luminosity function of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 444, 15-28.	4.4	21
63	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	3.7	19
64	Testing gamma-ray burst models with the afterglow of GRB 090102. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	17
65	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
66	X-ray sources and their optical counterparts in the globular cluster M 22. Astronomy and Astrophysics, 2004, 424, 133-143.	5.1	17
67	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
68	Xâ€Ray Afterglow Light Curves: Toward A Standard Candle?. Astrophysical Journal, 2008, 683, 620-629.	4.5	15
69	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. Astronomy and Astrophysics, 2009, 503, 783-795.	5.1	14
70	Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L26-L30.	3.3	14
71	OBSERVATION OF CORRELATED OPTICAL AND GAMMA EMISSIONS FROM GRB 081126. Astrophysical Journal, 2009, 697, L18-L21.	4.5	12
72	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	3.7	12

#	Article	IF	CITATIONS
73	On the nature of X-ray flashes in the SWIFT era. Astronomy and Astrophysics, 2007, 465, L13-L16.	5.1	11
74	Can we quickly flag ultra-long gamma-ray bursts?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2471-2476.	4.4	11
75	First XMM-Newton observations of the globular cluster MÂ22. Astronomy and Astrophysics, 2002, 381, 481-486.	5.1	10
76	X-ray flashes or soft gamma-ray bursts?. Astronomy and Astrophysics, 2007, 461, 485-492.	5.1	10
77	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
78	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
79	The XMM-Newton observation of CRBÂ040106: Evidence forÂanÂafterglow in a wind environment. Astronomy and Astrophysics, 2004, 424, L27-L30.	5.1	9
80	Gamma-ray burst afterglows: luminosity clustering at infrared wavelengths?. Astronomy and Astrophysics, 2008, 492, L1-L4.	5.1	7
81	A Study of GRBs with Low-luminosity Afterglows. Astrophysical Journal, 2017, 850, 117.	4.5	7
82	Limits on the early afterglow phase of gamma-ray burst sources from TAROT-1. Astronomy and Astrophysics, 2001, 378, 76-81.	5.1	7
83	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
84	ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving COsmos. , 2006, , .		5
85	EDCE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5
86	Neutrino alert systems for Gamma Ray Bursts and transient astronomical sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602, 275-278.	1.6	5
87	The Zadko Telescope: Exploring the Transient Universe. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	5
88	The TAROT archive: rising afterglows. , 2009, , .		4
89	The LOFT contribution to GRB science. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 109-112.	0.4	4
90	GRB 141221A: gone is the wind. Monthly Notices of the Royal Astronomical Society, 2016, 459, 508-516.	4.4	4

#	Article	IF	CITATIONS
91	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 2017, 5, 6.	3.0	3
92	GRANDMA: A NETWORK TO COORDINATE THEM ALL. Revista Mexicana De AstronomÃa Y AstrofÃsica Serie De Conferencias, 0, 53, 198-205.	0.2	3
93	X-ray afterglow light curves: toward a standard candle?. AIP Conference Proceedings, 2008, , .	0.4	2
94	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. Astronomy and Astrophysics, 2011, 530, A74.	5.1	2
95	SOLAR ATMOSPHERIC MAGNETIC ENERGY COUPLING: BROAD PLASMA CONDITIONS AND SPECTRUM REGIMES. Astrophysical Journal, 2016, 833, 257.	4.5	2
96	Multi-wavelength analysis of the field of the dark burst GRBÂ031220. Astronomy and Astrophysics, 2006, 451, 27-33.	5.1	2
97	FROM A COMPUTER CONTROLLED TELESCOPE TO A ROBOTIC OBSERVATORY: THE HISTORY OF THE VIRT. Revista Mexicana De AstronomÃa Y AstrofÃsica Serie De Conferencias, 2019, 51, 9-14.	0.2	2
98	X-ray sources in globular clusters. Astronomische Nachrichten, 2003, 324, 147-147.	1.2	1
99	Browsing the sky through the ASI Science Data Centre Data Explorer Tool. , 2010, , .		1
100	An extreme climate transition in the Caribbean's Virgin Islands. I. Evidence of teleconnection with the 1976/1977 Pacific climate shift. International Journal of Climatology, 2018, 38, 2730-2742.	3.5	1
101	An extreme climate transition in the Caribbean's Virgin Islands. II. Sun and Northern hemisphere atmospheric–oceanic feedbacks. International Journal of Climatology, 2020, 40, 3623-3633.	3.5	1
102	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
103	Binary formation within globular clusters: X-ray clues. Astronomy and Astrophysics, 2005, 433, 137-141.	5.1	1
104	Using X-Rays to Probe the Compact Binary Content of Globular Clusters. International Astronomical Union Colloquium, 2004, 194, 75-76.	0.1	0
105	A systematic analysis of X-ray afterglows of gamma-ray burst observed by XMM-Newton. Advances in Space Research, 2006, 38, 1325-1328.	2.6	0
106	XMM-Newton observations of faint X-ray sources in globular clusters. Advances in Space Research, 2006, 38, 2930-2933.	2.6	0
107	Observation of the prompt and early afterglow of GRB 050904 by TAROT. AIP Conference Proceedings, 2006, , .	0.4	0
108	A catalog of X-ray afterglows observed by BeppoSAX, XMM-Newton and Chandra. AIP Conference Proceedings, 2006, , .	0.4	0

ARTICLE IF CITATIONS # The true redshift distribution of Pre-SWIFT gamma-ray bursts. AIP Conference Proceedings, 2006, , . The Standard Model of GRBs at Face with GRB 090102A., 2010,,. 110 0 A Correlated Optical and Gamma Emission from GRB 081126A., 2010, , . The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-1415. 112 2.6 0 CRB160203A: an exploration of lumpy space. Monthly Notices of the Royal Astronomical Society, 2021, 4.4 504, 716-722. Optical observations of the BepiColombo spacecraft as a proxy for a potential threatening asteroid. Acta Astronautica, 2021, 184, 251-258. 114 3.2 0 THE ZADKO OBSERVATORY. Revista Mexicana De AstronomÃa Y AstrofÃsica Serie De Conferencias, 0, 53, 35-39. Modeling the GRB 170202A Fireball from Continuous Observations with the Zadko and the Virgin 116 4.5 0 Island Robotic Telescopes. Astrophysical Journal, 2022, 929, 16.

BRUCE GENDRE