Filomena A Pettolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739034/publications.pdf

Version: 2024-02-01

47 papers

3,345 citations

28 h-index 223531 46 g-index

48 all docs 48 docs citations

times ranked

48

4616 citing authors

#	Article	IF	CITATIONS
1	Determining the polysaccharide composition of plant cell walls. Nature Protocols, 2012, 7, 1590-1607.	5 . 5	557
2	High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant Journal, 2007, 50, 1118-1128.	2.8	286
3	A barley <i>cellulose synthase-like CSLH</i> gene mediates $(1,3;1,4)$ - \hat{l}^2 - <scp>d</scp> -glucan synthesis in transgenic <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5996-6001.	3.3	246
4	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	2.8	226
5	Arabinogalactan Proteins Are Required for Apical Cell Extension in the Moss Physcomitrella patens. Plant Cell, 2005, 17, 3051-3065.	3.1	179
6	Overâ€expression of specific <i>HvCslF</i> cellulose synthaseâ€like genes in transgenic barley increases the levels of cell wall (1,3;1,4)â€l²â€ <scp>d</scp> â€glucans and alters their fine structure. Plant Biotechnology Journal, 2011, 9, 117-135.	4.1	171
7	Plant cell walls: the skeleton of the plant world. Functional Plant Biology, 2010, 37, 357.	1.1	161
8	Mixedâ€linkage (1→3),(1→4)â€Î² <scp>â€dâ€</scp> glucan is not unique to the Poales and is an abundant comp <i>Equisetum arvense</i> cell walls. Plant Journal, 2008, 54, 510-521.	oonent of	151
9	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€transcriptional regulator Ccr4â€Pop2. Molecular Microbiology, 2011, 79, 968-989.	1.2	115
10	<i>GbEXPATR</i> , a speciesâ€specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnology Journal, 2016, 14, 951-963.	4.1	83
11	Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta, 2004, 219, 1023-1035.	1.6	79
12	Structure of cellulose microfibrils in mature cotton fibres. Carbohydrate Polymers, 2017, 175, 450-463.	5.1	74
13	A $(1\hat{a}^{\dagger},4)$ - \hat{l}^2 -mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans. Planta, 2001, 214, 235-242.	1.6	64
14	Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Applied Microbiology and Biotechnology, 2007, 73, 1363-1376.	1.7	61
15	The Transcriptional Regulator LEUNIC_HOMOLOG Regulates Mucilage Release from the Arabidopsis Testa Â. Plant Physiology, 2011, 156, 46-60.	2.3	58
16	Polysaccharide composition of the fruit juice of Morinda citrifolia (Noni). Phytochemistry, 2006, 67, 1271-1275.	1.4	57
17	Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence. Eukaryotic Cell, 2012, 11, 532-544.	3.4	57
18	Genetic and DNA Methylation Changes in Cotton (Gossypium) Genotypes and Tissues. PLoS ONE, 2014, 9, e86049.	1.1	56

#	Article	IF	CITATIONS
19	Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: Sequential extraction and chemical characterization. Carbohydrate Polymers, 2011, 84, 484-494.	5.1	51
20	Pattern of Deposition of Cell Wall Polysaccharides and Transcript Abundance of Related Cell Wall Synthesis Genes during Differentiation in Barley Endosperm. Plant Physiology, 2012, 159, 655-670.	2.3	50
21	The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. MSphere, 2016, 1, .	1.3	39
22	Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. Journal of Experimental Botany, 2017, 68, 1519-1529.	2.4	39
23	Hyphal cell walls from the plant pathogen <i>Rhynchosporiumâ€∫ secalis</i> contain (1,3/1,6)â€Î²â€ <scp>d</scp> â€glucans, galacto―and rhamnomannans, (1,3;1,4)â€Î²â€ <scp>d</scp> â€glucans FEBS Journal, 2009, 276, 3698-3709.	and chitir	1.38
24	Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genomics, 2017, 18, 539.	1.2	38
25	A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype <i>fs2</i> of Barley Is Attributable to a Retroelement in the <i>HvCesA4</i> Cellulose Synthase Gene Â. Plant Physiology, 2010, 153, 1716-1728.	2.3	37
26	Zebularine treatment is associated with deletion of <i>FT</i> â€ <i>B1</i> leading to an increase in spikelet number in bread wheat. Plant, Cell and Environment, 2018, 41, 1346-1360.	2.8	36
27	Effect of the native polysaccharide of cashew-nut tree gum exudate on murine peritoneal macrophage modulatory activities. Carbohydrate Polymers, 2015, 125, 241-248.	5.1	34
28	Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins. Planta, 2007, 226, 1131-1142.	1.6	30
29	An exo- \hat{l}^2 -(1 \hat{a} †'3)-d-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure. Carbohydrate Research, 2012, 352, 70-81.	1.1	28
30	Characterization of cell wall polysaccharides from the medicinal plant Panax notoginseng. Phytochemistry, 2005, 66, 1067-1076.	1.4	22
31	Cashew-nut tree exudate gum: Identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Science, 2007, 173, 468-477.	1.7	22
32	Hpf2 Glycan Structure Is Critical for Protection against Protein Haze Formation in White Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 3308-3315.	2.4	21
33	The Cell Wall Polymers of the Charophycean Green Alga <i>Chara corallina</i> Biochemical Screening. International Journal of Plant Sciences, 2010, 171, 345-361.	0.6	21
34	Glycan Profiling of Plant Cell Wall Polymers using Microarrays. Journal of Visualized Experiments, 2012, , e4238.	0.2	19
35	Oil Accumulation in Transgenic Potato Tubers Alters Starch Quality and Nutritional Profile. Frontiers in Plant Science, 2017, 8, 554.	1.7	18
36	Mutations to LmIFRD affect cell wall integrity, development and pathogenicity of the ascomycete Leptosphaeria maculans. Fungal Genetics and Biology, 2009, 46, 695-706.	0.9	17

#	Article	IF	CITATIONS
37	Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress Â. Plant Physiology, 2011, 156, 2155-2171.	2.3	17
38	Immunoactive Polysaccharide-Rich Fractions from Panax notoginseng. Planta Medica, 2006, 72, 1193-1199.	0.7	16
39	Characterisation of secreted polysaccharides and (glyco)proteins from suspension cultures of Pyrus communis. Phytochemistry, 2008, 69, 873-881.	1.4	14
40	Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. Journal of Plant Physiology, 2016, 191, 127-139.	1.6	11
41	Effects of Yariv dyes, arabinogalactan-protein binding reagents, on the growth and viability of Brazilian pine suspension culture cells. Trees - Structure and Function, 2010, 24, 391-398.	0.9	10
42	Application of a mannan-specific antibody for the detection of galactomannans in foods. Food Hydrocolloids, 2002, 16, 551-556.	5.6	9
43	Arabinogalactan-proteins from cell suspension cultures of Araucaria angustifolia. Phytochemistry, 2010, 71, 1400-1409.	1.4	9
44	Preparation of a new chromogenic substrate to assay for \hat{I}^2 -galactanases that hydrolyse type II arabino-3,6-galactans. Carbohydrate Research, 2009, 344, 1941-1946.	1.1	7
45	Cotton Breeding in Australia: Meeting the Challenges of the 21st Century. Frontiers in Plant Science, 2022, 13, .	1.7	7
46	The importance of anatomy and physiology in plant metabolomics. Topics in Current Genetics, 2007, , 253-278.	0.7	4
47	The cell wall polysaccharides of a photosynthetic relative of apicomplexans, <i>Chromera velia</i> Journal of Phycology, 2021, 57, 1805-1809.	1.0	O