Arnaud Guertin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Technical note: Proton beam dosimetry at ultraâ€high dose rates (FLASH): Evaluation of GAFchromicâ,,¢ (EBT3, EBTâ€XD) and OrthoChromic (OCâ€1) film performances. Medical Physics, 2022, 49, 2732-2745.	1.6	18
2	Electrochemical co-deposition of Ni–Gd2O3 for composite thin targets preparation: Production of 155Tb as a case study. Applied Radiation and Isotopes, 2022, 186, 110287.	0.7	2
3	A Monte Carlo Determination of Dose and Range Uncertainties for Preclinical Studies with a Proton Beam. Cancers, 2021, 13, 1889.	1.7	6
4	Is 70Zn(d,x)67Cu the Best Way to Produce 67Cu for Medical Applications?. Frontiers in Medicine, 2021, 8, 674617.	1.2	17
5	Bremsstrahlung X-rays as a non-invasive tool for ion beam monitoring. Nuclear Instruments & Methods in Physics Research B, 2021, 500-501, 76-82.	0.6	2
6	High energy PIXE: New experimental K-shell ionization cross sections for silver and gold and comparison with theoretical values from ECPSSR/RECPSSR models. Nuclear Instruments & Methods in Physics Research B, 2020, 479, 120-124.	0.6	2
7	Investigation of energy dependance for EBT3 response to irradiation with alpha beams. Nuclear Instruments & Methods in Physics Research B, 2019, 454, 56-60.	0.6	2
8	New Cross-Sections for natMo(\hat{l} ±,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator. Instruments, 2019, 3, 7.	0.8	17
9	THE RADIOBIOLOGICAL PLATFORM AT ARRONAX. Radiation Protection Dosimetry, 2019, 183, 270-273.	0.4	8
10	High energy PIXE: A tool to characterize multi-layer thick samples. Nuclear Instruments & Methods in Physics Research B, 2018, 417, 41-45.	0.6	7
11	Production of Sc medical radioisotopes with proton and deuteron beams. Applied Radiation and Isotopes, 2018, 142, 104-112.	0.7	28
12	Thick multi-layers analysis using high energy PIXE. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 104-107.	0.6	1
13	How nuclear data collected for medical radionuclides production could constrain nuclear codes. EPJ Web of Conferences, 2017, 146, 08008.	0.1	0
14	Thorium-232 fission induced by light charged particles up to 70 MeV. EPJ Web of Conferences, 2017, 146, 04058.	0.1	1
15	How to produce the highest tin-117m specific activity?. Radiotherapy and Oncology, 2016, 118, S35-S36.	0.3	1
16	Tb-155 production with gadolinium target: proton, deuteron or alpha beam?. Radiotherapy and Oncology, 2016, 118, S36.	0.3	0
17	How to produce scandium-44 efficiently?. Radiotherapy and Oncology, 2016, 118, S48.	0.3	0
18	Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy. Applied Radiation and Isotopes, 2016, 118, 281-289.	0.7	20

ARNAUD GUERTIN

#	Article	IF	CITATIONS
19	New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV. Nuclear Instruments & Methods in Physics Research B, 2016, 383, 191-212.	0.6	28
20	How to produce high specific activity tin-117 m using alpha particle beam. Applied Radiation and Isotopes, 2016, 115, 113-124.	0.7	11
21	ls there an interest to use deuteron beams to produce nonconventional radionuclides?. Radiotherapy and Oncology, 2016, 118, S49.	0.3	0
22	MEGAPIE: The World's First High-Power Liquid Metal Spallation Neutron Source. , 2016, , 279-287.		5
23	Une plateforme pour l'analyse de matériaux par faisceaux d'ions à ARRONAX. Étude de l'effet dâ sur les échantillons. Instrumentation Mesure Metrologie, 2016, 15, 117-127.	€™humid 0.2	ité
24	Production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Physics in Medicine and Biology, 2015, 60, 6847-6864.	1.6	45
25	New beam monitoring tool for radiobiology experiments at the cyclotron ARRONAX. Radiation Protection Dosimetry, 2015, 166, 257-260.	0.4	4
26	Is There an Interest to Use Deuteron Beams to Produce Non-Conventional Radionuclides?. Frontiers in Medicine, 2015, 2, 31.	1.2	13
27	Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Physics in Medicine and Biology, 2015, 60, 931-946.	1.6	24
28	Cross section measurements of deuteron induced nuclear reactions on natural titanium up to 34 MeV. Applied Radiation and Isotopes, 2015, 103, 160-165.	0.7	6
29	Development of a PIXE method at high energy with the ARRONAX cyclotron. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 895-901.	0.7	5
30	Measurements of 186Re production cross section induced by deuterons on natW target at ARRONAX facility. Nuclear Medicine and Biology, 2014, 41, e16-e18.	0.3	9
31	232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nuclear Medicine and Biology, 2014, 41, e19-e22.	0.3	13
32	EBT2 films response to alpha radiation at 48.3 MeV. Radiation Protection Dosimetry, 2014, 161, 428-432.	0.4	3
33	MEASUREMENT OF 230Pa AND 186Re PRODUCTION CROSS SECTIONS INDUCED BY DEUTERONS AT ARRONAX FACILITY. International Journal of Modern Physics Conference Series, 2014, 27, 1460149.	0.7	Ο
34	Neutron production in neutron-induced reactions at 96 MeV on56Fe and208Pb. Physical Review C, 2011, 84, .	1.1	3
35	Gas Production in the MEGAPIE Spallation Target. Nuclear Science and Engineering, 2011, 169, 178-187.	0.5	4
36	Nuclear reaction measurements of 95MeV/u 12C interactions on PMMA for hadrontherapy. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2676-2684.	0.6	26

ARNAUD GUERTIN

#	Article	IF	CITATIONS
37	Experience from the post-test analysis of MEGAPIE. Journal of Nuclear Materials, 2011, 415, 367-377.	1.3	12
38	Gas production in the MEGAPIE spallation target. , 2011, , .		1
39	Neutronic characterization of the MEGAPIE target. Annals of Nuclear Energy, 2009, 36, 350-354.	0.9	6
40	WEBEXPIR: Windowless target electron beam experimental irradiation. Journal of Nuclear Materials, 2008, 376, 302-306.	1.3	2
41	ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1377-1387.	3.3	96
42	The MEGAPIE-TEST project: Supporting research and lessons learned in first-of-a-kind spallation target technology. Nuclear Engineering and Design, 2008, 238, 1471-1495.	0.8	63
43	Neutron-induced light-ion production from Fe, Pb and U at 96 MeV. Radiation Protection Dosimetry, 2007, 126, 123-125.	0.4	1
44	Studies of neutron-induced light-ion production with the MEDLEY facility. , 2007, , .		0
45	ARRONAX, a high intensity cyclotron in Nantes. , 2007, , .		Ο
46	(n,xn) measurements at 96 MeV. , 2007, , .		0