Kevin E Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738843/publications.pdf Version: 2024-02-01

KEVIN E SMITH

#	Article	IF	CITATIONS
1	Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption. Physical Review B, 2003, 68, .	3.2	115
2	Surface and bulk electronic structure of thin-film wurtzite GaN. Physical Review B, 1997, 56, 10271-10275.	3.2	108
3	Experimental and theoretical study of the electronic structures of $\hat{I}\pm$ -PbO and \hat{I}^2 -PbO2. Journal of Materials Chemistry, 2007, 17, 267-277.	6.7	104
4	Quantized Electron Accumulation States in Indium Nitride Studied by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 2006, 97, 237601.	7.8	103
5	Boron Subphthalocyanine Chloride as an Electron Acceptor for Highâ€Voltage Fullereneâ€Free Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 561-566.	14.9	89
6	Density of states, hybridization, and band-gap evolution inAlxGa1â^'xNalloys. Physical Review B, 1998, 58, 1928-1933.	3.2	76
7	Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Physical Review B, 2008, 78, .	3.2	75
8	Experimental and theoretical study of the electronic structure of HgO andTl2O3. Physical Review B, 2005, 71, .	3.2	51
9	Influence of Carrier Density and Energy Barrier Scattering on a High Seebeck Coefficient and Power Factor in Transparent Thermoelectric Copper Iodide. ACS Applied Energy Materials, 2020, 3, 10037-10044.	5.1	49
10	Electronic structure near the Fermi level of the organic semiconductor copper phthalocyanine. Chemical Physics Letters, 2004, 390, 203-207.	2.6	46
11	The electronic structure of solids studied using angle resolved photoemission spectroscopy. Progress in Solid State Chemistry, 1991, 21, 49-131.	7.2	44
12	Fermi surface of a quasi-one-dimensional oxide conductor. Physical Review Letters, 1993, 70, 3772-3775.	7.8	43
13	Electronic Structure near the Fermi Surface in the Quasi-One-Dimensional ConductorLi0.9Mo6O17. Physical Review Letters, 1999, 83, 1235-1238.	7.8	38
14	Electronic structure of the organic semiconductor vanadyl phthalocyanine (VO-Pc). Journal of Materials Chemistry, 2007, 17, 1276.	6.7	38
15	Transport behavior and electronic structure of phase pure VO2 thin films grown on <i>c</i> -plane sapphire under different O2 partial pressure. Journal of Applied Physics, 2013, 114, .	2.5	38
16	Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and <i>ab initio</i> calculations. Physical Review B, 2008, 77, .	3.2	35
17	Metal-insulator transition induced in CaVO3 thin films. Journal of Applied Physics, 2013, 113,	2.5	31
18	Electronic structure of surface defects in K0.3MoO3. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2196-2200.	2.1	29

Κένιν Ε Smith

#	Article	IF	CITATIONS
19	Role of phase separation in nanocomposite indium-tin-oxide films for transparent thermoelectric applications. Journal of Materiomics, 2021, 7, 612-620.	5.7	28
20	Water adsorption on vanadium oxide thin films in ambient relative humidity. Journal of Chemical Physics, 2020, 152, 044715.	3.0	27
21	On the involvement of the shallow core 5d level in the bonding in HgO. Chemical Physics Letters, 2004, 399, 98-101.	2.6	26
22	Elucidating the factors that determine the open circuit voltage in discrete heterojunction organic photovoltaic cells. Journal of Materials Chemistry, 2010, 20, 1173-1178.	6.7	25
23	Largeâ€Area 2D/3D MoS ₂ –MoO ₂ Heterostructures with Thermally Stable Exciton and Intriguing Electrical Transport Behaviors. Advanced Electronic Materials, 2017, 3, 1600335.	5.1	25
24	Surface electronic structure of p-type GaN(0001Ì"). Surface Science, 2000, 467, L827-L833.	1.9	23
25	Soft X-ray spectroscopy study of electronic structure in the organic semiconductor titanyl phthalocyanine (TiO-Pc). Journal of Materials Chemistry, 2008, 18, 1792.	6.7	21
26	Electronic structure of the organic semiconductor copper tetraphenylporphyrin (CuTPP). Applied Surface Science, 2009, 256, 720-725.	6.1	20
27	Electronic excitations in vanadium oxide phthalocyanine studied via resonant soft X-ray emission and resonant inelastic X-ray scattering. Chemical Physics Letters, 2005, 413, 95-99.	2.6	18
28	The Itinerant 2D Electron Gas of the Indium Oxide (111) Surface: Implications for Carbon―and Energy onversion Applications. Small, 2020, 16, e1903321.	10.0	17
29	A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals. Physical Chemistry Chemical Physics, 2016, 18, 31958-31965.	2.8	16
30	Soft x-ray emission studies of the bulk electronic structure of AlN, GaN, and Al[sub 0.5]Ga[sub 0.5]N. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2250.	1.6	15
31	Photoemission study of sulfur and oxygen adsorption on GaN(). Surface Science, 2006, 600, 116-123.	1.9	12
32	Electronic structure in low dimensional and correlated transition metal oxides: high resolution photoemission and X-ray emission studies. Solid State Sciences, 2002, 4, 359-378.	3.2	10
33	Momentum for Catalysis: How Surface Reactions Shape the RuO2 Flat Surface State. ACS Catalysis, 2021, 11, 1749-1757.	11.2	8
34	Dominant role of the surface in photoemission from quasi-one dimensional conductors: K0.3MoO3. Journal of Physics and Chemistry of Solids, 1996, 57, 1803-1809.	4.0	7
35	Surface electronic structure of the organic superconductor κ-(ET)2Cu(NCS)2 studied via photoemission microscopy. Surface Science, 2004, 551, 219-227.	1.9	6
36	Bulk and Surface Electronic Structure of GaN Measured Using Angle-Resolved Photoemission, Soft X-ray Emission and Soft X-ray Absorption. Materials Research Society Symposia Proceedings, 1996, 449, 787.	0.1	5

Κένιν Ε Smith

#	Article	IF	CITATIONS
37	Photoemission Study of The Electronic Structure of Wurtzite Gan(0001) Surfaces. Materials Research Society Symposia Proceedings, 1997, 482, 802.	0.1	4
38	Surface degradation of InxGa1â^'xN thin films by sputter-anneal processing: A scanning photoemission microscope study. Journal of Applied Physics, 2003, 94, 5820-5825.	2.5	4
39	Electronic structure in thin film organic semiconductors studied using soft X-ray emission and resonant inelastic X-ray scattering. Thin Solid Films, 2006, 515, 394-400.	1.8	4
40	Ironsand (Titanomagnetite-Titanohematite): Chemistry, Magnetic Properties and Direct Applications for Wireless Power Transfer. Materials, 2021, 14, 5455.	2.9	4
41	Recent high resolution photoemission studies of electronic structure in quasi-one-dimensional conductors. Journal of Electron Spectroscopy and Related Phenomena, 2001, 117-118, 517-526.	1.7	3
42	Studies of the electronic structure in complex materials using synchrotron radiationâ€excited soft xâ€ray emission spectroscopy at the NSLS. Synchrotron Radiation News, 2002, 15, 11-15.	0.8	2
43	Soft X-Ray Emission and Resonant Inelastic X-Ray Scattering Studies of Transition Metal Oxides Materials Research Society Symposia Proceedings, 2002, 755, 1.	0.1	2
44	Methanol Adsorption on Vanadium Oxide Surfaces Observed by Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 23192-23204.	3.1	1
45	Defects in Quasi-One Dimensional Oxide Conductors: K0.3MoO3. Materials Research Society Symposia Proceedings, 1994, 375, 133.	0.1	0
46	Electronic Structure of the Organic Metals κ-Et2cu(SCN)2 and κ-Et2cu[N(Cn)2]Br Measured by Soft X-Ray Emission and Soft X-Ray Absorption. Materials Research Society Symposia Proceedings, 1997, 488, 489.	0.1	0
47	Molecular components of the bulk electronic structure of organic conductors: a soft X-ray absorption and soft X-ray emission spectroscopy approach. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 539-544.	1.7	0
48	X-ray Spectroscopic Studies of the Bulk Electronic Structure of InGaN Alloys. Materials Research Society Symposia Proceedings, 2002, 743, L10.11.1.	0.1	0
49	Effect of lattice mismatch on film morphology of the quasi-one dimensional conductor K _{0.3} MoO ₃ . RSC Advances, 2022, 12, 4521-4525.	3.6	0