List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 1996, 382, 810-813.	27.8	726
2	Minireview: Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cells of the Arcuate Nucleus: A Central Node in the Control of Gonadotropin-Releasing Hormone Secretion. Endocrinology, 2010, 151, 3479-3489.	2.8	657
3	Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B. Endocrinology, 2007, 148, 5752-5760.	2.8	581
4	Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. Journal of Neuroscience, 1987, 7, 1626-1638.	3.6	497
5	Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Conadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep. Endocrinology, 2008, 149, 5770-5782.	2.8	335
6	Medial nucleus of the amygdala mediates chemosensory control of male hamster sexual behavior. Science, 1980, 210, 557-560.	12.6	268
7	The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Research Reviews, 2000, 33, 34-77.	9.0	252
8	The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep. Endocrinology, 2010, 151, 301-311.	2.8	249
9	Immunocytochemical localization of luteinizing hormoneâ€releasing hormone (LHRH) pathways in the sheep brain during anestrus and the midâ€luteal phase of the estrous cycle. Journal of Comparative Neurology, 1986, 244, 19-35.	1.6	232
10	Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and beta-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the Suffolk ewe Endocrinology, 1993, 133, 887-895.	2.8	227
11	Effects of Suprachiasmatic Transplants on Circadian Rhythms of Neuroendocrine Function in Golden Hamsters**This work was supported by NIH Grants MH-44132, KO2-MH-00914, and F32-HD-07673. A preliminary report of this research was presented at the 23rd Annual Meeting of the Society for Neuroscience (Neurosci Abstr 19:236.17, 1993) Endocrinology, 1999, 140, 207-218.	2.8	216
12	Evidence That Dynorphin Plays a Major Role in Mediating Progesterone Negative Feedback on Gonadotropin-Releasing Hormone Neurons in Sheep. Endocrinology, 2004, 145, 2959-2967.	2.8	204
13	Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 1988, 253, 189-98.	2.9	199
14	Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes. Endocrinology, 2013, 154, 4259-4269.	2.8	191
15	Vomeronasal and olfactory pathways to the amygdala controlling male hamster sexual behavior: Autoradiographic and behavioral analyses. Brain Research, 1982, 240, 27-41.	2.2	184
16	Human Olfactory Biopsy: The Influence of Age and Receptor Distribution. JAMA Otolaryngology, 1992, 118, 731-738.	1.2	170
17	Estrogen receptors in dendrites and axon terminals in the guinea pig hypothalamus Endocrinology, 1992, 131, 281-290.	2.8	166
18	Altered Hematopoiesis, Behavior, and Sexual Function in μ Opioid Receptor–deficient Mice. Journal of Experimental Medicine, 1997, 185, 1517-1522.	8.5	166

#	Article	IF	CITATIONS
19	Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalisation in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophinâ€Releasing Hormone Neurones. Journal of Neuroendocrinology, 2010, 22, 1-12.	2.6	158
20	Neurokinin B Acts via the Neurokinin-3 Receptor in the Retrochiasmatic Area to Stimulate Luteinizing Hormone Secretion in Sheep. Endocrinology, 2010, 151, 3836-3846.	2.8	156
21	Molecular Mapping of the Neural Pathways Linking Leptin to the Neuroendocrine Reproductive Axis. Endocrinology, 2011, 152, 2302-2310.	2.8	152
22	Suprachiasmatic Regulation of Circadian Rhythms of Gene Expression in Hamster Peripheral Organs: Effects of Transplanting the Pacemaker. Journal of Neuroscience, 2006, 26, 6406-6412.	3.6	150
23	KNDy Cells Revisited. Endocrinology, 2018, 159, 3219-3234.	2.8	144
24	Distribution of estrogen receptor-immunoreactive cells in the sheep brain Endocrinology, 1993, 133, 876-886.	2.8	141
25	Neuroanatomy of the Kisspeptin Signaling System in Mammals: Comparative and Developmental Aspects. Advances in Experimental Medicine and Biology, 2013, 784, 27-62.	1.6	134
26	Anatomy of the kisspeptin neural network in mammals. Brain Research, 2010, 1364, 90-102.	2.2	129
27	The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nature Neuroscience, 2003, 6, 111-112.	14.8	128
28	Colocalization of Progesterone Receptors in Parvicellular Dynorphin Neurons of the Ovine Preoptic Area and Hypothalamus. Endocrinology, 2002, 143, 4366-4374.	2.8	123
29	Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Research, 1990, 525, 45-58.	2.2	120
30	KNDy (Kisspeptin/Neurokinin B/Dynorphin) Neurons Are Activated during Both Pulsatile and Surge Secretion of LH in the Ewe. Endocrinology, 2012, 153, 5406-5414.	2.8	119
31	Neurons that Migrate from the Olfactory Epithelium in the Chick Express Luteinizing Hormone-Releasing Hormone. Endocrinology, 1991, 128, 1676-1678.	2.8	111
32	Colocalisation of Dynorphin A and Neurokinin B Immunoreactivity in the Arcuate Nucleus and Median Eminence of the Sheep. Journal of Neuroendocrinology, 2006, 18, 534-541.	2.6	110
33	Seasonal Plasticity within the Gonadotropin-Releasing Hormone (GnRH) System of the Ewe: Changes in Identified GnRH Inputs and Glial Association. Endocrinology, 2003, 144, 3663-3676.	2.8	103
34	Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with ΔFosB as a Key Mediator. Journal of Neuroscience, 2013, 33, 3434-3442.	3.6	100
35	Role of the hypothalamic paraventricular nucleus in neuroendocrine responses to daylength in the golden hamster. Brain Research, 1984, 308, 25-32.	2.2	98
36	Fos expression during the estradiol-induced gonadotropin-releasing hormone (GnRH) surge of the ewe: induction in GnRH and other neurons Endocrinology, 1993, 133, 896-903.	2.8	97

#	Article	IF	CITATIONS
37	Progesterone Increases Dynorphin A Concentrations in Cerebrospinal Fluid and Preprodynorphin Messenger Ribonucleic Acid Levels in a Subset of Dynorphin Neurons in the Sheep. Endocrinology, 2005, 146, 1835-1842.	2.8	97
38	Neuroplasticity in the Mesolimbic System Induced by Natural Reward and Subsequent Reward Abstinence. Biological Psychiatry, 2010, 67, 872-879.	1.3	95
39	Diurnal Variations in Natural and Drug Reward, Mesolimbic Tyrosine Hydroxylase, and Clock Gene Expression in the Male Rat. Journal of Biological Rhythms, 2009, 24, 465-476.	2.6	94
40	Role of the Thyroid Cland in Seasonal Reproduction. III. Thyroidectomy Blocks Seasonal Suppression of Gonadotropin-Releasing Hormone Secretion in Sheep*. Endocrinology, 1991, 129, 1635-1643.	2.8	86
41	Kisspeptin Neurons from Mice to Men: Similarities and Differences. Endocrinology, 2012, 153, 5105-5118.	2.8	85
42	Multiple regulatory elements result in regional specificity in circadian rhythms of neuropeptide expression in mouse SCN. NeuroReport, 1999, 10, 3165-3174.	1.2	83
43	A double-label pre-embedding immunoperoxidase technique for electron microscopy using diaminobenzidine and tetramethylbenzidine as markers Journal of Histochemistry and Cytochemistry, 1989, 37, 1283-1289.	2.5	79
44	κ-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology, 2016, 157, 2367-2379.	2.8	79
45	Evidence for Seasonal Plasticity in the Gonadotropin-Releasing Hormone (GnRH) System of the Ewe: Changes in Synaptic Inputs onto GnRH Neurons1. Endocrinology, 1997, 138, 1240-1250.	2.8	76
46	ΔFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Genes, Brain and Behavior, 2010, 9, 831-840.	2.2	76
47	Stria terminalis lesions alter the temporal pattern of copulatory behavior in the male golden hamster. Behavioural Brain Research, 1983, 8, 109-128.	2.2	75
48	Kisspeptin and seasonality in sheep. Peptides, 2009, 30, 154-163.	2.4	74
49	A Subset of Gonadotropin-Releasing Hormone Neurons in the Ovine Medial Basal Hypothalamus Is Activated during Increased Pulsatile Luteinizing Hormone Secretion ¹ . Endocrinology, 1999, 140, 5929-5936.	2.8	73
50	Insulin: Its role in the central control of reproduction. Physiology and Behavior, 2014, 133, 197-206.	2.1	73
51	Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first year medical students. Anatomical Sciences Education, 2017, 10, 34-45.	3.7	72
52	The Suprachiasmatic Nucleus: A Clock of Multiple Components. Journal of Biological Rhythms, 2003, 18, 435-449.	2.6	71
53	The GnRH System of Seasonal Breeders: Anatomy and Plasticity. Brain Research Bulletin, 1997, 44, 445-457.	3.0	69
54	Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber?. European Journal of Neuroscience, 2009, 30, 1739-1748.	2.6	66

#	Article	IF	CITATIONS
55	A Role for Neurokinin B in Pulsatile GnRH Secretion in the Ewe. Neuroendocrinology, 2014, 99, 18-32.	2.5	66
56	Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and beta- endorphin-immunoreactive neurons contain estrogen receptors? A double- label immunocytochemical study in the Suffolk ewe. Endocrinology, 1993, 133, 887-895.	2.8	65
57	Activation of \hat{l}_{4} opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience, 2004, 124, 11-21.	2.3	64
58	Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes. Endocrinology, 2012, 153, 5918-5927.	2.8	64
59	Neurons of origin and fiber trajectory of amygdalofugal projections to the medial preoptic area in syrian hamsters. Journal of Comparative Neurology, 1989, 280, 59-71.	1.6	61
60	Neural mechanisms controlling seasonal reproduction: Principles derived from the sheep model and its comparison with hamsters. Frontiers in Neuroendocrinology, 2015, 37, 43-51.	5.2	60
61	Effects of Suprachiasmatic Transplants on Circadian Rhythms of Neuroendocrine Function in Golden Hamsters. Endocrinology, 1999, 140, 207-218.	2.8	59
62	Ultrastructure and synaptic organization of luteinizing hormoneâ€releasing hormone (LHRH) neurons in the anestrous ewe. Journal of Comparative Neurology, 1988, 273, 447-458.	1.6	58
63	Neural Systems Mediating Seasonal Breeding in the Ewe. Journal of Neuroendocrinology, 2010, 22, 674-681.	2.6	58
64	Evidence for Changes in Numbers of Synaptic Inputs onto KNDy and GnRH Neurones during the Preovulatory LH Surge in the Ewe. Journal of Neuroendocrinology, 2015, 27, 624-635.	2.6	57
65	Dopaminergic A14/A15 neurons are activated during estradiol negative feedback in anestrous, but not breeding season, ewes Endocrinology, 1996, 137, 4443-4450.	2.8	55
66	Morphological Plasticity in the Neural Circuitry Responsible for Seasonal Breeding in the Ewe. Endocrinology, 2006, 147, 4843-4851.	2.8	55
67	Prenatal Testosterone Treatment Leads to Changes in the Morphology of KNDy Neurons, Their Inputs, and Projections to GnRH Cells in Female Sheep. Endocrinology, 2015, 156, 3277-3291.	2.8	55
68	Potential sites of interaction between catecholamines and LHRH in the sheep brain. Brain Research Bulletin, 1988, 20, 49-58.	3.0	54
69	Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Scientific Reports, 2019, 9, 14768.	3.3	52
70	Herpes simplex virus as a transneuronal tracer. Neuroscience and Biobehavioral Reviews, 1998, 22, 695-708.	6.1	50
71	Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiology and Behavior, 2015, 143, 58-69.	2.1	50
72	Neuroendocrine control of gonadotropinâ€releasing hormone: Pulsatile and surge modes of secretion. Journal of Neuroendocrinology, 2022, 34, e13094.	2.6	50

#	Article	IF	CITATIONS
73	Transplantation: a new tool in the analysis of the mammalian hypothalamic circadian pacemaker. Trends in Neurosciences, 1991, 14, 362-366.	8.6	49
74	Thyroid Hormone Receptor (α) Distribution in Hamster and Sheep Brain: Colocalization in Gonadotropin-Releasing Hormone and Other Identified Neurons*. Endocrinology, 1997, 138, 5039-5047.	2.8	49
75	Evidence for a ventral non-strial pathway from the amygdala to the bed nucleus of the stria terminalis in the male golden hamster. Brain Research, 1983, 268, 139-146.	2.2	47
76	Restoration of Circadian Rhythmicity by Transplants of SCN "Micropunches". Journal of Biological Rhythms, 1996, 11, 163-171.	2.6	47
77	Evidence that the Arcuate Nucleus Is an Important Site of Progesterone Negative Feedback in the Ewe. Endocrinology, 2011, 152, 3451-3460.	2.8	46
78	Endogenous Opioid-Induced Neuroplasticity of Dopaminergic Neurons in the Ventral Tegmental Area Influences Natural and Opiate Reward. Journal of Neuroscience, 2014, 34, 8825-8836.	3.6	46
79	Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens. PLoS ONE, 2012, 7, e34700.	2.5	46
80	Lesions of the Medial Prefrontal Cortex Cause Maladaptive Sexual Behavior in Male Rats. Biological Psychiatry, 2010, 67, 1199-1204.	1.3	45
81	Impact of psychosocial stress on gonadotrophins and sexual behaviour in females: role for cortisol?. Reproduction, 2016, 152, R1-R14.	2.6	45
82	Distribution of estrogen receptor-immunoreactive cells in the sheep brain. Endocrinology, 1993, 133, 876-886.	2.8	45
83	Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Hormones and Behavior, 2011, 59, 1-8.	2.1	43
84	A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections. Journal of Sexual Medicine, 2012, 9, 2256-2265.	0.6	43
85	The Premammillary Hypothalamic Area of the Ewe: Anatomical Characterization of a Melatonin Target Area Mediating Seasonal Reproduction1. Biology of Reproduction, 2004, 70, 1768-1775.	2.7	41
86	Prenatal Programming by Testosterone of Hypothalamic Metabolic Control Neurones in the Ewe. Journal of Neuroendocrinology, 2011, 23, 401-411.	2.6	40
87	Retrograde transneuronal transport of Herpex simplex virus in the retina after injection in the superior colliculus, hypothalamus and optic chiasm. Brain Research, 1989, 479, 374-378.	2.2	39
88	Potential for Polysialylated Form of Neural Cell Adhesion Molecule-Mediated Neuroplasticity within the Gonadotropin-Releasing Hormone Neurosecretory System of the Ewe*. Endocrinology, 2001, 142, 1317-1324.	2.8	39
89	Regulation of GnRH pulsatility in ewes. Reproduction, 2018, 156, R83-R99.	2.6	39
90	Methamphetamine acts on subpopulations of neurons regulating sexual behavior in male rats. Neuroscience, 2010, 166, 771-784.	2.3	38

#	Article	IF	CITATIONS
91	Evidence That Dynorphin Acts Upon KNDy and GnRH Neurons During GnRH Pulse Termination in the Ewe. Endocrinology, 2018, 159, 3187-3199.	2.8	38
92	Expression of haPer1 and haBmal1 in Syrian Hamsters: Heterogeneity of Transcripts and Oscillations in the Periphery. Journal of Biological Rhythms, 2004, 19, 113-125.	2.6	37
93	Neuronal plasticity and seasonal reproduction in sheep. European Journal of Neuroscience, 2010, 32, 2152-2164.	2.6	37
94	Sensitization of rotation behavior in rats with unilateral 6-hydroxydopamine or kainic acid-induced striatal lesions. Pharmacology Biochemistry and Behavior, 1990, 37, 755-759.	2.9	36
95	Photic Sensitivity for Circadian Response to Light Varies with Photoperiod. Journal of Biological Rhythms, 2012, 27, 308-318.	2.6	36
96	Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome. Endocrinology, 2019, 160, 2529-2542.	2.8	36
97	Functional effects of fetal striatal transplants. Brain Research Bulletin, 1989, 22, 163-172.	3.0	35
98	GnRH Neurons in the Fetal Lamb Hypothalamus Are Similar in Males and Females. Neuroendocrinology, 1992, 55, 427-433.	2.5	35
99	Neuroendocrine control of pulsatile GnRH secretion during the ovarian cycle: evidence from the ewe. Reproduction Supplement, 2002, 59, 41-56.	0.5	35
100	Ultrastructure of luteinizing hormone-releasing hormone (LHRH) neurons and their projections in the golden hamster. Brain Research Bulletin, 1988, 20, 211-221.	3.0	32
101	Cold water swim stress increases the expression of neurotensin mRNA in the lateral hypothalamus and medial preoptic regions of the rat brain. Molecular Brain Research, 2001, 86, 145-152.	2.3	32
102	Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance. Hormones and Behavior, 2010, 58, 397-404.	2.1	32
103	In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	32
104	A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin. Journal of Neuroscience Methods, 1999, 91, 1-8.	2.5	31
105	Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology, 2021, 162, .	2.8	31
106	Identification and Distribution of Neuroendocrine Gonadotropin-Releasing Hormone Neurons in the Ewe1. Biology of Reproduction, 1997, 56, 655-662.	2.7	30
107	The Transcription Factor Runx2 Is under Circadian Control in the Suprachiasmatic Nucleus and Functions in the Control of Rhythmic Behavior. PLoS ONE, 2013, 8, e54317.	2.5	30
108	Regulation of the Phase and Period of Circadian Rhythms Restored by Suprachiasmatic Transplants. Journal of Biological Rhythms, 1996, 11, 145-162.	2.6	29

#	Article	IF	CITATIONS
109	Orphanin FQ: Evidence for a Role in the Control of the Reproductive Neuroendocrine System. Endocrinology, 2007, 148, 4993-5001.	2.8	28
110	Concurrent Exposure to Methamphetamine and Sexual Behavior Enhances Subsequent Drug Reward and Causes Compulsive Sexual Behavior in Male Rats. Journal of Neuroscience, 2011, 31, 16473-16482.	3.6	28
111	The Gonadotropin-Releasing Hormone Neuronal System of the Male Djungarian Hamster: Distribution from the Olfactory Tubercle to the Medial Basal Hypothalamus. Neuroendocrinology, 1990, 51, 219-225.	2.5	27
112	Anterograde transport of HSV-1 and HSV-2 in the visual system. Brain Research Bulletin, 1992, 28, 393-399.	3.0	27
113	Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. NeuroReport, 1999, 10, 3159-3163.	1.2	27
114	Activation of Gastrin-releasing Peptide Receptors in the Lumbosacral Spinal Cord is Required for Ejaculation in Male Rats. Journal of Sexual Medicine, 2012, 9, 1303-1318.	0.6	27
115	Effects of Season and Estradiol on KNDy Neuron Peptides, Colocalization With D2 Dopamine Receptors, and Dopaminergic Inputs in the Ewe. Endocrinology, 2017, 158, 831-841.	2.8	27
116	D1-dopamine receptor binding and tyrosine hydroxylase-immunoreactivity in the fetal and neonatal hamster suprachiasmatic nucleus. Developmental Brain Research, 1998, 106, 137-144.	1.7	26
117	Changes in Hypothalamic Estrogen Receptor-Containing Cell Numbers in Response to Feed Restriction in the Female Lamb. Neuroendocrinology, 1999, 69, 430-437.	2.5	26
118	Dynorphin Immunoreactive Fibers Contact GnRH Neurons in the Human Hypothalamus. Reproductive Sciences, 2009, 16, 781-787.	2.5	26
119	Effects of methamphetamine on sexual performance and compulsive sex behavior in male rats. Psychopharmacology, 2010, 212, 93-104.	3.1	26
120	Prenatal Testosterone Excess Decreases Neurokinin 3 Receptor Immunoreactivity within the Arcuate Nucleus <scp>KND</scp> y Cell Population. Journal of Neuroendocrinology, 2015, 27, 100-110.	2.6	26
121	Do Substance P and Neurokinin A Play Important Roles in the Control of LH Secretion in Ewes?. Endocrinology, 2016, 157, 4829-4841.	2.8	26
122	A Subset of Estrogen Receptor-Containing Neurons Project to the Median Eminence in the Ewe. Journal of Neuroendocrinology, 1996, 8, 921-927.	2.6	24
123	The Ability of Estradiol to Induce Fos Expression in a Subset of Estrogen Receptor-α-Containing Neurons in the Preoptic Area of the Ewe Depends on Reproductive Status ¹ . Endocrinology, 2000, 141, 190-196.	2.8	24
124	Ovarian Estrogen Receptor-β (ERβ) Regulation: I. Changes in ERβ Messenger RNA Expression Prior to Ovulation in the Ewe1. Biology of Reproduction, 2001, 65, 866-872.	2.7	24
125	Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in motherâ€deprived neonatal rabbit pups. European Journal of Neuroscience, 2011, 34, 1807-1816.	2.6	24
126	Activation of NMDA Receptors in Lumbar Spinothalamic Cells is Required for Ejaculation. Journal of Sexual Medicine, 2011, 8, 1015-1026.	0.6	24

#	Article	IF	CITATIONS
127	Neurokininâ€3 Receptor Activation in the Retrochiasmatic Area is Essential for the Full Preâ€Ovulatory <scp>Luteinising Hormone</scp> Surge in Ewes. Journal of Neuroendocrinology, 2014, 26, 776-784.	2.6	24
128	Luteinizing Hormone-Releasing Hormone in the Vomeronasal System and Terminal Nerve of the Hamster. Annals of the New York Academy of Sciences, 1987, 519, 229-240.	3.8	23
129	Tracing SCN graft efferents with Dil. Brain Research, 1991, 554, 15-21.	2.2	23
130	Distribution of preprodynorphin mRNA and dynorphin-a immunoreactivity in the sheep preoptic area and hypothalamus. Neuroscience, 2005, 130, 409-418.	2.3	23
131	Does the KNDy Model for the Control of Gonadotropin-Releasing Hormone Pulses Apply to Monkeys and Humans?. Seminars in Reproductive Medicine, 2019, 37, 071-083.	1.1	23
132	Regional Differences in the Distribution of Gonadotropin-Releasing Hormone Cells between Rapidly Growing and Growth-Restricted Prepubertal Female Sheep1. Endocrinology, 1997, 138, 230-236.	2.8	22
133	Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization. Anatomical Sciences Education, 2016, 9, 179-185.	3.7	22
134	Fos expression during the estradiol-induced gonadotropin-releasing hormone (GnRH) surge of the ewe: induction in GnRH and other neurons. Endocrinology, 1993, 133, 896-903.	2.8	22
135	Immunocytochemical colocalization of GABA-B receptor subunits in gonadotropin-releasing hormone neurons of the sheep. Neuroscience, 2006, 141, 311-319.	2.3	21
136	Sex differences and effects of prenatal exposure to excess testosterone on ventral tegmental area dopamine neurons in adult sheep. European Journal of Neuroscience, 2015, 41, 1157-1166.	2.6	21
137	Prenatal testosterone exposure decreases colocalization of insulin receptors in kisspeptin/neurokinin B/dynorphin and agoutiâ€related peptide neurons of the adult ewe. European Journal of Neuroscience, 2016, 44, 2557-2568.	2.6	21
138	A Subset of Gonadotropin-Releasing Hormone Neurons in the Ovine Medial Basal Hypothalamus Is Activated during Increased Pulsatile Luteinizing Hormone Secretion. Endocrinology, 1999, 140, 5929-5936.	2.8	20
139	Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for Ejaculation. Journal of Sexual Medicine, 2010, 7, 2445-2457.	0.6	19
140	Localization of a peptide sequence contained in the precursor to gonadotropin releasing hormone (GnRH). Brain Research, 1987, 402, 346-350.	2.2	18
141	Paraventricular neurons control hamster photoperiodism by a predominantly uncrossed descending pathway. Brain Research Bulletin, 1987, 19, 687-694.	3.0	18
142	Behavioral Effects of Neural Transplantation. Cell Transplantation, 1992, 1, 401-427.	2.5	18
143	Dopaminergic A14/A15 neurons are activated during estradiol negative feedback in anestrous, but not breeding season, ewes. Endocrinology, 1996, 137, 4443-4450.	2.8	18
144	Long-term Effects of Early Cocaine Exposure on the Light Responsiveness of the Adult Circadian Timing System11Reviewed through the Developmental Neurotoxicology section, Charles F. Mactutus, Ph.D., Guest Editor Neurotoxicology and Teratology, 1998, 20, 555-564.	2.4	17

#	Article	IF	CITATIONS
145	Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle. , 1998, 391, 133-145.		17
146	Evidence for Seasonal Plasticity in the Gonadotropin-Releasing Hormone (GnRH) System of the Ewe: Changes in Synaptic Inputs onto GnRH Neurons. Endocrinology, 1997, 138, 1240-1250.	2.8	17
147	How do fetal grafts of the suprachiasmatic nucleus communicate with the host brain?. Cell Transplantation, 1995, 4, 75-81.	2.5	16
148	CSF signaling in physiology and behavior. Progress in Brain Research, 2000, 125, 415-433.	1.4	16
149	Estradiol Negative Feedback Regulation by Clutamatergic Afferents to A15 Dopaminergic Neurons: Variation with Season. Endocrinology, 2009, 150, 4663-4671.	2.8	16
150	Surgeâ€Like Luteinising Hormone Secretion Induced by Retrochiasmatic Area <scp>NK</scp> 3R Activation is Mediated Primarily by Arcuate Kisspeptin Neurones in the Ewe. Journal of Neuroendocrinology, 2016, 28, .	2.6	16
151	Evidence That Endogenous Somatostatin Inhibits Episodic, but Not Surge, Secretion of LH in Female Sheep. Endocrinology, 2017, 158, 1827-1837.	2.8	16
152	Luteinizing hormone-releasing hormone in the pigeon terminal nerve and olfactory bulb. Neuroscience Letters, 1992, 135, 201-204.	2.1	15
153	Age of donor influences ability of suprachiasmatic nucleus grafts to restore circadian rhythmicity. Developmental Brain Research, 1993, 71, 45-52.	1.7	15
154	Characterization and regulation of pre-ovulatory secretion of gonadotrophin-releasing hormone. Human Reproduction, 1993, 8, 51-56.	0.9	15
155	Neural system-enriched gene expression: relationship to biological pathways and neurological diseases. Physiological Genomics, 2004, 18, 167-183.	2.3	15
156	NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light. PLoS ONE, 2013, 8, e76365.	2.5	15
157	Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Scientific Reports, 2018, 8, 2242.	3.3	15
158	Seasonal plasticity in the brain: the use of large animal models for neuroanatomical research. Reproduction Supplement, 2002, 59, 149-65.	0.5	15
159	Evidence that γ-Aminobutyric Acid Is Part of the Neural Circuit Mediating Estradiol Negative Feedback in Anestrous Ewes. Endocrinology, 2008, 149, 2762-2772.	2.8	13
160	Evidence that Orphanin FQ Mediates Progesterone Negative Feedback in the Ewe. Endocrinology, 2013, 154, 4249-4258.	2.8	12
161	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	2.6	12
162	Effect of Fetal Striatal and Astrocyte Transplants into Unilateral Excitotoxin-Lesioned Striatum. Journal of Neural Transplantation & Plasticity, 1993, 4, 279-287.	0.7	10

#	Article	IF	CITATIONS
163	Single- and double-label immunocytochemical study of the ovine suprachiasmatic nucleus (SCN): GABAergic and peptidergic relationships. Brain Research Bulletin, 1994, 34, 499-506.	3.0	10
164	The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. Vitamins and Hormones, 2018, 107, 89-135.	1.7	10
165	Importance of neuroanatomical data from domestic animals to the development and testing of the KNDy hypothesis for GnRH pulse generation. Domestic Animal Endocrinology, 2020, 73, 106441.	1.6	10
166	Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology, 2020, 161, .	2.8	10
167	Potential for Polysialylated Form of Neural Cell Adhesion Molecule-Mediated Neuroplasticity within the Gonadotropin-Releasing Hormone Neurosecretory System of the Ewe. Endocrinology, 2001, 142, 1317-1324.	2.8	10
168	Evidence That the LH Surge in Ewes Involves Both Neurokinin B–Dependent and –Independent Actions of Kisspeptin. Endocrinology, 2019, 160, 2990-3000.	2.8	9
169	Regional Differences in the Distribution of Gonadotropin-Releasing Hormone Cells between Rapidly Growing and Growth-Restricted Prepubertal Female Sheep. Endocrinology, 1997, 138, 230-236.	2.8	9
170	Thyroid Hormone Receptor (Â) Distribution in Hamster and Sheep Brain: Colocalization in Gonadotropin-Releasing Hormone and Other Identified Neurons. Endocrinology, 1997, 138, 5039-5047.	2.8	9
171	The Ability of Estradiol to Induce Fos Expression in a Subset of Estrogen Receptor-Â-Containing Neurons in the Preoptic Area of the Ewe Depends on Reproductive Status. Endocrinology, 2000, 141, 190-196.	2.8	9
172	Unraveling the Mechanism of Action of the GnRH Pulse Generator. , 2014, , 133-152.		6
173	Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Frontiers in Neuroscience, 2021, 15, 636764.	2.8	6
174	Evidence that synaptic plasticity of glutamatergic inputs onto KNDy neurones during the ovine follicular phase is dependent on increasing levels of oestradiol. Journal of Neuroendocrinology, 2021, 33, e12945.	2.6	6
175	A new chromogen for use in HRP-tract tracing and double-label immunocytochemistry. Brain Research Bulletin, 1990, 25, 393-396.	3.0	5
176	Biotinylated Dextran Amine as a Marker for Fetal Hypothalamic Homografts and Their Efferents. Experimental Neurology, 2002, 174, 72-80.	4.1	5
177	Arcuate nucleus kisspeptin response to increased nutrition in rams. Reproduction, Fertility and Development, 2019, 31, 1682.	0.4	5
178	Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology, 2020, 161, .	2.8	5
179	Localization of kisspeptin, NKB, and NK3R in the hypothalamus of gilts treated with the progestin altrenogest. Biology of Reproduction, 2021, 105, 1056-1067.	2.7	4
180	Origins of the â€~KNDy hypothesis' of GnRH pulse generation. Nature Reviews Endocrinology, 2022, 18, 521-521.	9.6	4

#	Article	IF	CITATIONS
181	Comparison of Magnetic Resonance Angiography and Computed Tomography Angiography Stereoscopic Cerebral Vascular Models. Advances in Experimental Medicine and Biology, 2019, 1205, 1-9.	1.6	2
182	Introduction to the PANS special issue. Journal of Neuroendocrinology, 2018, 30, e12612.	2.6	1
183	Morphological and functional evidence for sexual dimorphism in neurokinin B signalling in the retrochiasmatic area of sheep. Journal of Neuroendocrinology, 2020, 32, e12877.	2.6	1
184	Unraveling the Neural Mechanisms Underlying the GnRH Pulse Generator: An Update. , 2021, , 123-148.		1
185	Orphanin FQ Cells of the Ovine Hypothalamus Express Estradiol Receptor-Alpha and Progesterone Receptors, but Not Kisspeptin or Tyrosine Hydroxylase Biology of Reproduction, 2011, 85, 603-603.	2.7	1
186	Interviews: A collection of stories and perspectives about the past and future of <scp>GnRH</scp> research. Journal of Neuroendocrinology, 2022, 34, .	2.6	1
187	Citric Acid-Ammonium Acetate Buffer. Biotechnic and Histochemistry, 1991, 66, 27-28.	1.3	0
188	A new society for the $\hat{a} \in \hat{\infty}$ New World $\hat{a} \in \hat{s}$ Journal of Neuroendocrinology, 2017, 29, .	2.6	0
189	The impact of preâ€matriculation summer educational enrichment program on student performance in medical gross anatomy course (534.6). FASEB Journal, 2014, 28, 534.6.	0.5	0
190	SAT-426 Rabies-Mediated Monosynaptic Tract-Tracing of Sexually Dimorphic Estrogen-Sensitive Afferents to KNDy Neurons in the Mouse. Journal of the Endocrine Society, 2019, 3, .	0.2	0
191	Preface to the special issue. Journal of Neuroendocrinology, 2022, 34, .	2.6	О